CB
Craig Byersdorfer
Author with expertise in Natural Killer Cells in Immunity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
0
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Monocyte production of C1q potentiates CD8+T cell effector function following respiratory viral infection

Taylor Eddens et al.Jun 6, 2023
+10
D
O
T
Summary Respiratory viral infections remain a leading cause of morbidity and mortality. Using a murine model of human metapneumovirus (HMPV), we identified recruitment of a C1q-producing inflammatory monocyte population concomitant with viral clearance by adaptive immune cells. Genetic ablation of C1q led to reduced CD8 + T cell function. Production of C1q by a myeloid lineage was sufficient to enhance CD8 + T cell function. Activated and dividing CD8 + T cells expressed a putative C1q receptor, gC1qR. Perturbation of gC1qR signaling led to altered CD8 + T cell IFN-γ production and metabolic capacity. Autopsy specimens from fatal respiratory viral infections in children demonstrated diffuse production of C1q by an interstitial population. Humans with severe COVID-19 infection also demonstrated upregulation of gC1qR on activated and rapidly dividing CD8 + T cells. Collectively, these studies implicate C1q production from monocytes as a critical regulator of CD8 + T cell function following respiratory viral infection.
2

AMPK Drives Both Glycolytic and Oxidative Metabolism in T Cells During Graft-versus-host Disease

Archana Ramgopal et al.Jun 13, 2023
+6
L
E
A
ABSTRACT Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process reliant on the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine T cells lacking AMPK decreased oxidative metabolism at early timepoints post-transplant and were also unable to mediate a compensatory increase in glycolysis following inhibition of the electron transport chain. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo in a modified model of GVHD. Immunoprecipitation of proteins from day 7 allogeneic T cells, using an antibody specific to phosphorylated AMPK targets, recovered lower levels of multiple glycolysis-related proteins including the glycolytic enzymes aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Functionally, murine T cells lacking AMPK exhibited impaired aldolase activity following anti-CD3/CD28 stimulation and a decrease in GAPDH activity on day 7 post-transplant. Importantly, these changes in glycolysis correlated with an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells during GVHD and endorse further study of AMPK inhibition as a potential target for future clinical therapies. KEY POINTS AMPK plays a key role in driving both and oxidative and glycolytic metabolism in T cells during graft-versus-host disease (GVHD) Absence of AMPK simultaneously impairs both glycolytic enzyme activity, most notably by aldolase, and interferon gamma (IFNγ) production
6

AMPK agonism optimizes the in vivo persistence and anti-leukemia efficacy of chimeric antigen receptor T cells

Erica Braverman et al.Sep 29, 2024
+9
H
M
E
BACKGROUND: Chimeric antigen receptor T cell (CART) therapy has seen great clinical success. However, up to 50% of leukemia patients relapse and long-term survivor data indicate that CART cell persistence is key to enforcing relapse-free survival. Unfortunately, ex vivo expansion protocols often drive metabolic and functional exhaustion, reducing in vivo efficacy. Preclinical models have demonstrated that redirecting metabolism ex vivo can improve in vivo T cell function and we hypothesized that exposure to an agonist targeting the metabolic regulator AMP-activated protein kinase (AMPK), would create CARTs capable of both efficient leukemia clearance and increased in vivo persistence. METHODS: CART cells were generated from healthy human via lentiviral transduction. Following activation, cells were exposed to either Compound 991 or DMSO for 96 hours, followed by a 48-hour washout. During and after agonist treatment, T cells were harvested for metabolic and functional assessments. To test in vivo efficacy, immunodeficient mice were injected with luciferase+ NALM6 leukemia cells, followed one week later by either 991- or DMSO-expanded CARTs. Leukemia burden and anti-leukemia efficacy was assessed via radiance imaging and overall survival. RESULTS: Human T cells expanded in Compound 991 activated AMPK without limiting cellular expansion and gained both mitochondrial density and improved handling of reactive oxygen species (ROS). Importantly, receipt of 991-exposed CARTs significantly improved in vivo leukemia clearance, prolonged recipient survival, and increased CD4+ T cell yields at early times post-injection. Ex vivo, 991 agonist treatment mimicked nutrient starvation, increased autophagic flux, and promoted generation of mitochondrially-protective metabolites. DISCUSSION: Ex vivo expansion processes are necessary to generate sufficient cell numbers, but often promote sustained activation and differentiation, negatively impacting in vivo persistence and function. Here, we demonstrate that promoting AMPK activity during CART expansion metabolically reprograms cells without limiting T cell yield, enhances in vivo anti-leukemia efficacy, and improves CD4+ in vivo persistence. Importantly, AMPK agonism achieves these results without further modifying the expansion media, changing the CART construct, or genetically altering the cells. Altogether, these data highlight AMPK agonism as a potent and readily translatable approach to improve the metabolic profile and overall efficacy of cancer-targeting T cells.
6
Paper
610 RSC
610 RSC
$0.00
0
Save
10

Overexpression of AMPKγ2 increases AMPK signaling to augment human T cell metabolism and function

Erica Braverman et al.Oct 3, 2022
+5
D
M
E
ABSTRACT T cell-based cellular therapies benefit from a product with reduced differentiation and enhanced oxidative metabolism. Methods to achieve this balance without negatively impacting T cell expansion or impairing T cell function have proven elusive. AMP-activated protein kinase (AMPK) is a cellular energy sensor which promotes mitochondrial health and improves oxidative metabolism. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates (OCR), higher maximal OCR, and augmented spare respiratory capacity. These changes were accompanied by increased mitochondrial density and elevated expression of proteins involved in mitochondrial fusion. AMPKγ2-transduction also increased T cell glycolytic activity. This combination of metabolic reprogramming enhanced in vitro T cell expansion while promoting memory T cell yield. Finally, when activated under decreasing glucose conditions, AMPKγ2-transduced T cells maintained higher levels of both proliferation and inflammatory cytokine production. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and function of human T cells for subsequent use in adoptive cellular therapies. Key points Lentiviral Transduction of AMPKγ2 increases oxidative metabolism in human T cells AMPKγ2 transduction enhances in vitro proliferation without inducing exhaustion AMPKγ2-transduced T cells function better under low glucose conditions
0

AMPK Drives both Glycolytic and Oxidative Metabolism in Murine and Human T Cells During Graft-versus-host Disease

Archana Ramgopal et al.May 29, 2024
+8
L
E
A
Abstract Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor adenosine monophosphate (AMP)–activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia effects. In the current studies, murine AMPK knock-out (KO) T cells decreased oxidative metabolism at early time points posttransplant and lacked a compensatory increase in glycolysis after inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), with enzyme assays confirming impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma upon antigenic restimulation and a decrease in the total number of donor CD4 T cells recovered at later times posttransplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and after expansion in vivo. Xenogeneic GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.