ZY
Zhiyun Ye
Author with expertise in Role of AMP-Activated Protein Kinase in Cellular Metabolism
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(55% Open Access)
Cited by:
1,843
h-index:
25
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK

Chen-Song Zhang et al.Jul 18, 2017
Glucose starvation activates AMPK via an AMP/ADP-independent mechanism that involves fructose-1,6-bisphosphate and aldolase. AMPK is a central regulator of metabolic homeostasis, and its dysfunction may result in various diseases including diabetes, obesity, and cancer. AMPK is known to be activated under stressful conditions, including glucose starvation. It has been assumed that upon glucose deprivation AMPK activation occurs in the canonical AMP/ADP-dependent manner, with reduced metabolism of glucose causing falling ATP and increasing AMP and ADP. Here, Sheng-Cai Lin and colleagues show that this is not the case, and that glucose starvation activates AMPK via a different route, in an AMP/ADP-independent manner. During glycolysis, glucose is converted to fructose-1,6-bisphosphate (FBP), which is then processed by FBP aldolases. The authors show that the absence of glucose results in a reduction of FBP-bound aldolase, which triggers LKB1 phosphorylation and activation of AMPK. This study thus uncovers FBP as the critical metabolite that signals glucose availability and FBP aldolases as the sensors that relay the information to AMPK. The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK)1, but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK2,3,4,5. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation6,7. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.
0

The Lysosomal v-ATPase-Ragulator Complex Is a Common Activator for AMPK and mTORC1, Acting as a Switch between Catabolism and Anabolism

Chen-Song Zhang et al.Jul 4, 2014
AMPK and mTOR play principal roles in governing metabolic programs; however, mechanisms underlying the coordination of the two inversely regulated kinases remain unclear. In this study we found, most surprisingly, that the late endosomal/lysosomal protein complex v-ATPase-Ragulator, essential for activation of mTORC1, is also required for AMPK activation. We also uncovered that AMPK is a residential protein of late endosome/lysosome. Under glucose starvation, the v-ATPase-Ragulator complex is accessible to AXIN/LKB1 for AMPK activation. Concurrently, the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RAG is inhibited by AXIN, causing dissociation from endosome and inactivation of mTORC1. We have thus revealed that the v-ATPase-Ragulator complex is also an initiating sensor for energy stress and meanwhile serves as an endosomal docking site for LKB1-mediated AMPK activation by forming the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex, thereby providing a switch between catabolism and anabolism. Our current study also emphasizes a general role of late endosome/lysosome in controlling metabolic programs.
0

Low-dose metformin targets the lysosomal AMPK pathway through PEN2

Teng Ma et al.Feb 23, 2022
Abstract Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects 1–4 . For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action 4,5 ; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation 6 . We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase 7 , as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase 8 , which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.
0

Enhanced Tribological Performance of TiO2-hBN/CNT Double-Layer coating by CNT-Assisted plasma electrolytic oxidation with Nanoparticles Addition

Ruonan Ji et al.Jun 14, 2024
Hexagonal boron nitride (h-BN) is considered a very promising anti-friction material, however, how to assemble them densely and uniformly on metal surfaces remains a challenge. In this study, CNT-assisted plasma electrolytic oxidation (PEO) with the addition of h-BN nanoparticles was employed to create a double-layer coating on titanium alloy, demonstrating exceptional tribological characteristics. The CNTs not only acted as lubricating phases to improve the anti-friction performance but also as additives to facilitate the transition from the nanocomposite coating to the double-layer coating. The later stage of the PEO process with CNT doped in the electrolyte produces an interesting sudden rise in current density, which generates strong and dense discharge that facilitates the deposition and sintering of h-BN. As a result, the double-layer coating has a higher adhesion and hardness as well as more h-BN nanoparticles incorporated into the coating compared to coatings without CNTs-assisted deposition. Further, the double-layer coating exhibits a lower friction coefficient (~ 0.11), attributed to the high release rate of h-BN under shear to form a lubrication film in conjunction with CNTs on the contact surface. The simple technique offers a novel approach to fabricating self-lubricating ceramic coatings on light alloys, which has huge potential for application in the anti-friction materials field.
Load More