Abstract Postural instability marks one of the most disabling features of Parkinson’s disease (PD), but only reveals itself after affected brain areas have already been significantly damaged. Thus, there is a need to detect deviations in balance and postural control before visible symptoms occur. In this study, we visually perturbed balance in the anterior-posterior direction using sinusoidal oscillations of a moving room in virtual reality at different frequencies. We tested three groups: individuals with PD under dopaminergic medication, an age-matched control group, and a group of young healthy adults. We tracked their centre of pressure and their full-body motion. We investigated sway amplitudes and applied newly introduced phase-locking analyses to investigate responses across participants’ bodies. Patients exhibited significantly higher sway amplitudes as compared to the control subjects. However, their sway was phase-locked to the visual motion like that of age-matched and young healthy adults. Furthermore, all groups successfully compensated for the visual perturbation by – most likely reflexively - phase-locking their sway to the stimulus. As frequency of the perturbation increased, distribution of phase-locking (PL) across the body revealed a shift of the highest PL-values from the upper body towards the hip-region for young healthy adults, which could not be observed in patients and elderly healthy adults. Our findings suggest an impaired neuromuscular stability, but intact visuomotor processing in early stages of PD, while less flexibility to adapt postural strategy to different perturbations revealed to be an effect of age rather than disease. New & Noteworthy A better understanding of visuomotor control in Parkinson’s disease (PD) potentially serves as a tool for earlier diagnosis, which is crucial for improving patient’s quality of life. In our study, we assess body sway responses to visual perturbations of the balance control system in patients with early-to-mid stage PD, using motion tracking along with recently established phase-locking techniques. Our findings suggest patients at this stage to have an impaired muscular stability but intact visuomotor control.