JZ
Jarod Zepp
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1,834
h-index:
27
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

IL-37 is a fundamental inhibitor of innate immunity

Marcel Nold et al.Oct 10, 2010
+3
J
C
M
The function of IL-37 remains elusive. Dinarello and colleagues find that IL-37 acts as a natural suppressor of innate inflammatory and immune responses. The function of interleukin 37 (IL-37; formerly IL-1 family member 7) has remained elusive. Expression of IL-37 in macrophages or epithelial cells almost completely suppressed production of pro-inflammatory cytokines, whereas the abundance of these cytokines increased with silencing of endogenous IL-37 in human blood cells. Anti-inflammatory cytokines were unaffected. Mice with transgenic expression of IL-37 were protected from lipopolysaccharide-induced shock, and showed markedly improved lung and kidney function and reduced liver damage after treatment with lipopolysaccharide. Transgenic mice had lower concentrations of circulating and tissue cytokines (72–95% less) than wild-type mice and showed less dendritic cell activation. IL-37 interacted intracellularly with Smad3 and IL-37-expressing cells and transgenic mice showed less cytokine suppression when endogenous Smad3 was depleted. IL-37 thus emerges as a natural suppressor of innate inflammatory and immune responses.
0
Citation775
0
Save
0

Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor

William Zacharias et al.Feb 28, 2018
+6
J
D
W
Functional tissue regeneration is required for the restoration of normal organ homeostasis after severe injury. Some organs, such as the intestine, harbour active stem cells throughout homeostasis and regeneration; more quiescent organs, such as the lung, often contain facultative progenitor cells that are recruited after injury to participate in regeneration. Here we show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the alveolar type 2 cell population acts as a major facultative progenitor cell in the distal lung. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a large proportion of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome and functional phenotype and respond specifically to Wnt and Fgf signalling. In contrast to other proposed lung progenitor cells, human AEPs can be directly isolated by expression of the conserved cell surface marker TM4SF1, and act as functional human alveolar epithelial progenitor cells in 3D organoids. Our results identify the AEP lineage as an evolutionarily conserved alveolar progenitor that represents a new target for human lung regeneration strategies.
0
Citation589
0
Save
0

Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung

Jarod Zepp et al.Sep 1, 2017
+4
D
W
J
The lung is an architecturally complex organ comprising a heterogeneous mixture of various epithelial and mesenchymal lineages. We use single-cell RNA sequencing and signaling lineage reporters to generate a spatial and transcriptional map of the lung mesenchyme. We find that each mesenchymal lineage has a distinct spatial address and transcriptional profile leading to unique niche regulatory functions. The mesenchymal alveolar niche cell is Wnt responsive, expresses Pdgfrα, and is critical for alveolar epithelial cell growth and self-renewal. In contrast, the Axin2+ myofibrogenic progenitor cell preferentially generates pathologically deleterious myofibroblasts after injury. Analysis of the secretome and receptome of the alveolar niche reveals functional pathways that mediate growth and self-renewal of alveolar type 2 progenitor cells, including IL-6/Stat3, Bmp, and Fgf signaling. These studies define the cellular and molecular framework of lung mesenchymal niches and reveal the functional importance of developmental pathways in promoting self-renewal versus a pathological response to tissue injury.
0

Marginated neutrophils in the lungs effectively compete for nanoparticles targeted to the endothelium, serving as a part of the reticuloendothelial system

Marco Zamora et al.Jun 10, 2024
+26
K
E
M
Abstract Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has not achieved this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such “endothelial-targeted” nanocarriers also effectively target the lungs’ numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils’ uptake of many of these “endothelial-targeted” nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels. Graphical Abstract
0
Citation1
0
Save
12

A CXCL12 morphogen gradient uncovers lung endothelial heterogeneity and promotes distal vascular growth

Prashant Chandrasekaran et al.May 1, 2022
+11
H
F
P
Abstract In adults, there is a growing amount of data uncovering the cellular diversity of the pulmonary circulation and mechanisms governing vascular repair after injury, however, molecular and cellular mechanisms contributing to the morphogenesis and growth of the pulmonary vasculature during embryonic development are less clear. Importantly, deficits in vascular development lead to a large number of lung diseases in children, indicating a need to uncover fetal programs that promote pulmonary vascular growth. To address this, we used a transgenic mouse reporter for expression of Cxcl12 , an arterial hallmark gene, and performed single-cell RNA sequencing on isolated Cxcl12 -DsRed+ endothelium to assess cellular heterogeneity within pulmonary endothelium. Combining cell annotation, gene ontology analysis, and spatial transcriptomics allowed us to segregate the developing artery into spatially and functionally distinct novel subpopulations. In addition, expression of Cxcl12 suggests a morphogen gradient from arteries to capillaries, suggesting directed cell migration for pulmonary vascular development. Disruption of this gradient led to abnormal branching and pulmonary vascular hypoplasia. These data provide evidence for arterial endothelial functional heterogeneity and reveal conserved signaling mechanisms essential for pulmonary vascular development.
12
Citation1
0
Save
3

Dynamic Hippo pathway activity underlies mesenchymal differentiation during lung alveolar morphogenesis

Fatima Chaudhry et al.Oct 17, 2023
+4
S
D
F
Abstract Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are critical for alveologenesis. However, the pathways that regulate SCMF function, proliferation, and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-sequencing, and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted Hippo effectors, Yap/Taz, from Acta2-expressing SCMFs at the onset of alveologenesis, causing a significant arrest in alveolar development. Using scRNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle (ASM), and alveolar duct myofibroblasts (DMF). Using lineage tracing, we show that neonatal Acta2-expressing SCMFs give rise to adult DMFs and that Yap/Taz mutants have an increase of persisting DMF-like cells in the alveolar ducts. Our findings identify plasticity in neonatal lung myofibroblasts and demonstrate that Yap/Taz are critical for maintaining lineage commitment along the proximal-distal axis.
2

Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome pulmonary fibrosis

Joanna Wang et al.Jun 18, 2023
+8
S
B
J
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8+ reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.