MS
Mitchell Schaffler
Author with expertise in Osteoporosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(47% Open Access)
Cited by:
6,418
h-index:
74
/
i10-index:
133
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bone remodeling in response to in vivo fatigue microdamage

David Burr et al.Jan 1, 1985
It has been suggested that osteonal remodeling is triggered by bone microdamage. The validity of this theory rests on the assumption that loading within the physiological range will produce substantial microdamage with relatively few load cycles. The object of the first experiment was to determine threshold values required to consistently produce fatigue microdamage in vivo. The left forelimb of five groups of dogs, characterized by different strain levels and different numbers of load cycles, were loaded in three point bending. The number of microscopic fields which contained some microdamage was calculated as a percentage of the total number of fields. This experiment indicated that loads producing strains as low as 1500 microstrain on the radius and 1400 microstrain on the ulna for 10,000 cycles will produce significant bone microdamage. A second experiment was performed to verify this threshold and to determine whether microcracks are associated with the initiation of bone remodeling. Procedures in this experiment were the same as those in the first, except that all dogs were loaded in such a way as to produce strains on the radius of 1500 microstrain for 10,000 cycles, and the dogs were sacrificed 1–4 days after loading. The loaded limb demonstrated significantly more microdamage than the control limb (p = 0.03). Moreover, we observed 44 times as many microcracks in association with resorption spaces as expected by chance alone. These data support the hypothesis that fatigue microdamage is a significant factor in the initiation of intracortical bone remodeling.
0

Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo

Olivier Verborgt et al.Jan 1, 2000
Abstract As a result of fatigue, bone sustains microdamage, which is then repaired by bone‐remodeling processes. How osteoclastic activity is targeted at the removal of microdamaged regions of bone matrix is unknown. In the current studies, we tested the hypothesis that changes in osteocyte integrity, through the initiation of regulated cell death (apoptosis), are associated with fatigue‐related microdamage and bone resorption. Ulnae of adult rats were fatigue‐loaded to produce a known degree of matrix damage. Osteocyte integrity was then assessed histomorphometrically from terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate–nick end labeling (TUNEL)–stained sections to detect cells undergoing DNA fragmentation associated with apoptosis; toluidine blue–stained sections were used for secondary morphological confirmation. Ten days after loading, large numbers of TUNEL‐positive osteocytes were found in bone surrounding microcracks and in bone surrounding intracortical resorption spaces (∼300% increases over controls, p < 0.005). TUNEL labeling in loaded ulnae at sites distant from microcracks or resorption foci did not differ from that in control bone. Osteocytes in toluidine blue–stained sections showed equivalent trends to TUNEL‐stained sections, with significant increases in pyknotic nuclei and empty lacunae associated with microcracks and intracortical resorption spaces. TUNEL‐positive osteocytes were observed around bone microdamage by 1 day after loading ( p < 0.01 relative to baseline), and their number remained elevated throughout the entire experimental period. Increases in empty lacunae and decreases in normal osteocyte numbers were observed over time as well. These studies show that (1) osteocyte apoptosis is induced by bone fatigue, (2) this apoptosis is localized to regions of bone that contain microcracks, and (3) osteoclastic resorption after fatigue also coincides with regions of osteocyte apoptosis. The strong associations between microdamage, osteocyte apoptosis, and subsequent bone remodeling support the hypothesis that osteocyte apoptosis provides a key part of the activation or signaling mechanisms by which osteoclasts target bone for removal after fatigue‐induced matrix injury.
0

Aging and matrix microdamage accumulation in human compact bone

Mitchell Schaffler et al.Dec 1, 1995
Bone matrix microdamage in bone matrix, evidenced as microcracks, occurs consequent to cyclic loading. Microdamage caused by in vivo loading has been described in human rib cortex; however, the existence and extent of microcracks in human long bone cortices are largely unknown. Using histomorphometric methods to examine the incidence and localization of microcracks in human femoral compact bone specimens, we found that the amount of microdamage present in femoral compact bone increases dramatically with increasing age. Least squares regression analysis showed that in males, microcrack density (Cr.De., #/mm2) increases exponentially with age (r2 = 0.70). In females, Cr.De. also increases as an exponential function of increasing age (r2 = 0.79), at a significantly higher rate than in male specimens (p < 0.001). The current studies indicate that with increasing age, bone microdamage accumulates more rapidly than intrinsic processes can effect its repair. A combination of cumulative loading history, focal changes in material properties and alteration in the ability of the tissue to perceive and/or react to microcracks may all play role in this accumulation of bone microdamage with aging. This accumulation of microdamage in bone will contribute to decreased strength and stiffness. In addition, and perhaps most significantly for understanding aging and increased bone fragility, matrix microdamage in composite materials like bone will result in a profoundly reduced resistance to fracture. The importance of this accumulation of matrix microdamage in human bone with increasing age in contributing to the increased fragility of the aging skeleton is discussed.
0

Influence of nonenzymatic glycation on biomechanical properties of cortical bone

Deepak Vashishth et al.Feb 1, 2001
In this study, the influence of nonenzymatic glycation (NEG) on the mechanical properties of bone and bone collagen were investigated. Bovine cortical bone specimens were incubated in ribose to cause collagen cross-links in vitro, and nondestructive mechanical testing was used to determine tensile and compressive elastic modulus as a function of incubation time. Mechanical properties associated with yield, postyield, and final fracture of bone were determined at the end of the incubation period. The stiffness of the collagen network was measured using stress relaxation tests of demineralized bone cylinders extracted periodically throughout the incubation period. It was found that accumulation of nonenzymatic glycation end-products in cortical bone caused stiffening of the type I collagen network in bone (r2 = 0.92; p < 0.001) but did not significantly affect the overall stiffness of the mineralized bone (p = 0.98). The ribosylated group had significantly more NEG products and higher yield stress and strain than the control group (p < 0.05). Postyield properties including postyield strain and strain energy were lower in the ribosylated group but were not significantly different from the control group (p = 0.24). Compared with the control group, the ribosylated group was characterized by significantly higher secant modulus and lower damage fraction (p < 0.05). Taken together, the results of this study suggest that collagen in bone is susceptible to the same NEG-mediated changes as collagen in other connective tissues and that an increased stiffness of the collagen network in bone due to NEG may explain some of the age-related increase in skeletal fragility and fracture risk.
0

Mechanotransduction and strain amplification in osteocyte cell processes

Yuefeng Han et al.Nov 11, 2004
A paradox in bone tissue is that tissue-level strains due to animal and human locomotion are too small to initiate intracellular chemical responses directly. A model recently was proposed to resolve this paradox, which predicts that the fluid flow through the pericellular matrix in the lacunar-canalicular porosity due to mechanical loading can induce strains in the actin filament bundles of the cytoskeleton that are more than an order of magnitude larger than tissue level strains. In this study, we greatly refine this model by using the latest ultrastructural data for the cell process cytoskeleton, the tethering elements that attach the process to the canalicular wall and their finite flexural rigidity EI . We construct a much more realistic 3D model for the osteocyte process and then use large-deformation “elastica” theory for finite EI to predict the deformed shape of the tethering elements and the hoop strain on the central actin bundle. Our model predicts a cell process that is 3 times stiffer than in a previous study but hoop strain of >0.5% for tissue-level strains of >1,000 microstrain at 1 Hz and >250 microstrain at frequencies >10 Hz. We propose that this strain-amplification model provides a more likely hypothesis for the excitation of osteocytes than the previously proposed fluid-shear hypothesis.
0

Intracortical remodeling in adult rat long bones after fatigue loading

V Bentolila et al.Sep 1, 1998
Intracortical remodeling in the adult skeleton removes and replaces areas of compact bone that have sustained microdamage. Although studies have been performed in animal species in which there is an existing baseline of remodeling activity, laboratory rodents have been considered to have limited suitability as models for cortical bone turnover processes because of a lack of haversian remodeling activity. Supraphysiological cyclic axial loading of the ulna in vivo was used to induce bending with consequent fatigue and microdamage. Right ulnae of adult Sprague-Dawley rats were fatigue-loaded to a prefailure stopping point of 30% decrease in ulnae whole bone stiffness. Ten days after the first loading, left ulnae were fatigued in the same way. Ulnae were harvested immediately to allow comparison of the immediate response of the left ulna to the fatigue loads, and the biological response of the right leg to the fatigue challenge. Histomorphometry and confocal microscopy of basic fuchsin-stained bone sections were used to assess intracortical remodeling activity, microdamage, and osteocyte integrity. Bone microdamage (linear microcracks, as well as patches of diffuse basic fuchsin staining within the cortex) occurred in fatigue-loaded ulnar diaphyses. Ten days after fatigue loading, intracortical resorption was activated in ulnar cortices. Intracortical resorption occurred in preferential association with linear-type microcracks, with microcrack number density reduced almost 40% by 10 days after fatigue. Resorption spaces were also consistently observed within areas of the cortex in which no bone matrix damage could be detected. Confocal microscopy studies showed alterations of osteocyte and canalicular integrity around these resorption spaces. These studies reveal that: (1) rat bone undergoes intracortical remodeling in response to high levels of cyclic strain, which induce microdamage in the cortex; and (2) intracortical resorption is associated both with bone microdamage and with regions of altered osteocyte integrity. From these studies, we conclude that rats can initiate haversian remodeling in long bones in response to fatigue, and that osteocyte death or damage may provide one of the stimuli for this process.
0

Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone

Ozan Akkuş et al.Dec 4, 2003
The measures of bone mass and architecture need to be supplemented with physicochemical and compositional measures for better assessment of fracture risk. In the current studies, we investigated the effects of physicochemical properties of mineral crystals on tissue and organ-level mechanical function of aging rat cortical bone. Our hypothesis was that age-related changes in physicochemical properties of mineral crystals are related to impaired elastic deformability of cortical bone tissue. Raman microspectroscopy was used to investigate the age-related changes in mineralization (relative amounts of mineral and organic matrix), the substitution of carbonate ions in phosphate positions (type-B carbonate substitution) and mineral crystallinity (the orderliness of crystal lattice) of femurs from young adult (3-month old), middle-aged (8-month old) and aged (24-month old) female Sprague–Dawley rats. Cross-sectional properties, the area and the moment of inertia at the mid-diaphysis, were histomorphometrically quantified and the elastic deformation capacity of femurs was quantified via three-point bending tests. It was observed that the elastic deformation capacity of aged rats was significantly impaired both at the tissue and the organ levels with increasing age. In parallel with this impairment in the elastic deformability and in support of our hypothesis, we found that increasing mineralization, increasing crystallinity and increasing type-B carbonate substitution were significantly correlated with decreasing elastic deformation capacity with age. We conclude that the measure of bone mass needs to be supplemented with measures reflecting the physicochemical status of mineral crystals for improved assessment of fracture susceptibility.
0
Citation421
0
Save
0

A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix

Lidan You et al.Nov 1, 2001
A model is presented that provides a resolution to a fundamental paradox in bone physiology, namely, that the strains applied to whole bone (i.e., tissue level strains) are much smaller (0.04–0.3 percent) than the strains (1–10 percent) that are necessary to cause bone signaling in deformed cell cultures (Rubin and Lanyon, J. Bone Joint Surg. 66A (1984) 397–410; Fritton et al., J. Biomech. 33 (2000) 317–325). The effect of fluid drag forces on the pericellular matrix (PM), its coupling to the intracellular actin cytoskeleton (IAC) and the strain amplification that results from this coupling are examined for the first time. The model leads to two predictions, which could fundamentally change existing views. First, for the loading range 1–20 MPa and frequency range 1–20 Hz, it is, indeed, possible to produce cellular level strains in bone that are up to 100 fold greater than normal tissue level strains (0.04–0.3 percent). Thus, the strain in the cell process membrane due to the loading can be of the same order as the in vitro strains measured in cell culture studies where intracellular biochemical responses are observed for cells on stretched elastic substrates. Second, it demonstrates that in any cellular system, where cells are subject to fluid flow and tethered to more rigid supporting structures, the tensile forces on the cell due to the drag forces on the tethering fibers may be many times greater than the fluid shear force on the cell membrane.
Load More