Summary Myeloid cells have a central role in homeostasis and tissue defence. Characterising the current in vitro protocols of myelopoiesis is imperative for their use in research and immunotherapy as well as for understanding the early stages of myeloid differentiation in humans. Here, we profiled the transcriptome of more than 400k cells and generated a robust molecular map of the differentiation of human induced pluripotent stem cells (iPSC) into macrophages. By integrating our in vitro datasets with in vivo single-cell developmental atlases, we found that in vitro macrophage differentiation recapitulates features of in vivo yolk sac hematopoiesis, which happens prior to the appearance of definitive hematopoietic stem cells (HSC). During in vitro myelopoiesis, a wide range of myeloid cells are generated, including erythrocytes, mast cells and monocytes, suggesting that, during early human development, the HSC-independent immune wave gives rise to multiple myeloid cell lineages. We leveraged this model to characterize the transition of hemogenic endothelium into myeloid cells, uncovering poorly described myeloid progenitors and regulatory programs. Taking advantage of the variety of myeloid cells produced, we developed a new protocol to produce type 2 conventional dendritic cells (cDC2) in vitro . We found that the underlying regulatory networks coding for myeloid identity are conserved in vivo and in vitro . Using genetic engineering techniques, we validated the effects of key transcription factors important for cDC2 and macrophage identity and ontogeny. This roadmap of early myeloid differentiation will serve as an important resource for investigating the initial stages of hematopoiesis, which are largely unexplored in humans, and will open up new therapeutic opportunities.