Abstract Environmental DNA (eDNA) analysis has gained traction as a precise and cost effective method for species and waterways management. To date, publications on eDNA protocol optimization have focused primarily on DNA yield. Therefore, it has not been possible to evaluate the cost and speed of specific components of the eDNA protocol, such as water filtration and DNA extraction method when designing or choosing an eDNA pipeline. At the same time, these two parameters are essential for the experimental design of a project. Here we evaluate and rank different eDNA protocols in the context of Chinook salmon ( Oncorhynchus tshawytscha ) eDNA detection in an aquatic environment, the San Francisco Estuary. We present a comprehensive evaluation of multiple eDNA protocol parameters, balancing time, cost and DNA yield. For estuarine waters, which are challenging for eDNA studies due to high turbidity, variable salinity, and the presence of PCR inhibitors, we find that a protocol combining glass filters and magnetic beads, along with an extra step for PCR inhibitor removal, is the method that best balances time, cost, and yield. In addition, we provide a generalized decision tree for determining the optimal eDNA protocol for other studies on aquatic systems. Our findings should be applicable to most aquatic environments and provide a clear guide for determining which eDNA pipeline should be used for a given environmental condition. Author Summary The use of environmental DNA (eDNA) analysis for monitoring wildlife has steadily grown in recent years. Though, due to differences in the ecology of the environment studied and the novelty of the technique, eDNA currently shows a lack of standards compared to other fields. Here we take a deep look into each step of an eDNA assay, looking at common protocols and comparing their efficiencies in terms of time to process the samples, cost and how much DNA is recovered. We then analyze the data to provide a concise interpretation of best practices given different project constraints. For the conditions of the San Francisco Estuary we suggest the use of glass fiber filtration, the use of paramagnetic beads for DNA extraction and the use of a secondary inhibitor removal. We expect our findings to provide better support for managers to decide their standards ahead of project submission not only for estuarine conditions but for other waterine conditions alike.