FW
Fangjiang Wu
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Comparative Analysis of Dimension Reduction Methods for Cytometry by Time-of-Flight Data

Kaiwen Wang et al.Apr 27, 2022
+3
F
Y
K
ABSTRACT While experimental and informatic techniques around single cell sequencing (scRNA-seq) are advanced, research around mass cytometry (CyTOF) data analysis has severely lagged behind. CyTOF data are dramatically different from scRNA-seq data in many aspects. This calls for the evaluation and development of computational methods specific for CyTOF data. Dimension reduction (DR) is one of the critical steps of single cell data analysis. Here, we benchmark the performances of 21 DR methods on 110 real and 425 synthetic CyTOF samples. We find that less well-known methods like SAUCIE, SQuaD-MDS, and scvis are the overall best performers. In particular, SAUCIE and scvis are well balanced, SQuaD-MDS excels at structure preservation, whereas UMAP has great downstream analysis performance. We also find that t- SNE (along with SQuad-MDS/t-SNE Hybrid) possesses the best local structure preservation. Nevertheless, there is a high level of complementarity between these tools, so the choice of method should depend on the underlying data structure and the analytical needs.
1
Citation1
0
Save
4

A Deep Learning Approach for Histology-Based Nuclei Segmentation and Tumor Microenvironment Characterization

Ruichen Rong et al.Dec 12, 2022
+12
Y
L
R
Abstract Microscopic examination of pathology slides is essential to disease diagnosis and biomedical research; however, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedure and produces massive data that capture tumor histological details at high resolution. Furthermore, the rapid development of deep learning algorithms has significantly increased the efficiency and accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic targets. Nuclei segmentation and classification are critical to pathology image analysis, especially in characterizing and quantifying the tumor microenvironment (TME). Computational algorithms have been developed for nuclei segmentation and TME quantification within image patches; however, existing algorithms are computationally intensive and time-consuming for WSI analysis. In this study, we present Histology-based Detection using Yolo (HD-Yolo), a new method that significantly accelerates nuclei segmentation and TME quantification. We demonstrate that HD-Yolo outperforms existing methods for WSI analysis in nuclei detection and classification accuracy, as well as computation time.
0

Mapping Cell-to-cell Interactions from Spatially Resolved Transcriptomics Data

James Zhu et al.Jan 1, 2023
+22
X
P
J
An accurate characterization of cell-cell communication (CCC) in the local tissue microenvironment is critical for elucidating the diverse biological processes that coordinate normal physiological development and disease progression. Emerging spatially resolved transcriptomics (SRT) techniques provide rich information on gene expression and cell locations that enable detection of CCC in their spatial context at unprecedented resolution. Here, we introduce a Bayesian framework, spacia, to detect CCC from SRT data, by fully exploiting their unique spatial modality, which dramatically increased the accuracy of the detection of CCC. We highlight spacia9s power to overcome fundamental limitations of popular single-cell RNA sequencing-based tools for inference of CCC, which lose single-cell resolution of CCCs and suffer from high false positive rates. Spacia unveiled how various types of cells in the tumor microenvironment differentially contribute to Epithelial-Mesenchymal Transition and lineage plasticity in tumor cells in a prostate cancer MERSCOPE dataset. We deployed spacia in a set of pan-cancer MERSCOPE datasets and derived a signature for measuring the impact of PDL1 on receiving cells from PDL1-positive sending cells. We showed that this signature is associated with patient survival and response to immune checkpoint inhibitor treatments in 3,354 patients. Overall, spacia represents a notable step in advancing quantitative theories of cellular communications.
0

pan-MHC and cross-Species Prediction of T Cell Receptor-Antigen Binding

Yi Han et al.Dec 4, 2023
+34
D
Y
Y
SUMMARY Profiling the binding of T cell receptors (TCRs) of T cells to antigenic peptides presented by MHC proteins is one of the most important unsolved problems in modern immunology. Experimental methods to probe TCR-antigen interactions are slow, labor-intensive, costly, and yield moderate throughput. To address this problem, we developed pMTnet-omni, an Artificial Intelligence (AI) system based on hybrid protein sequence and structure information, to predict the pairing of TCRs of αβ T cells with peptide-MHC complexes (pMHCs). pMTnet-omni is capable of handling peptides presented by both class I and II pMHCs, and capable of handling both human and mouse TCR-pMHC pairs, through information sharing enabled this hybrid design. pMTnet-omni achieves a high overall Area Under the Curve of Receiver Operator Characteristics (AUROC) of 0.888, which surpasses competing tools by a large margin. We showed that pMTnet-omni can distinguish binding affinity of TCRs with similar sequences. Across a range of datasets from various biological contexts, pMTnet-omni characterized the longitudinal evolution and spatial heterogeneity of TCR-pMHC interactions and their functional impact. We successfully developed a biomarker based on pMTnet-omni for predicting immune-related adverse events of immune checkpoint inhibitor (ICI) treatment in a cohort of 57 ICI-treated patients. pMTnet-omni represents a major advance towards developing a clinically usable AI system for TCR-pMHC pairing prediction that can aid the design and implementation of TCR-based immunotherapeutics.