YP
Yolande Pijnenburg
Author with expertise in Mechanisms of Alzheimer's Disease
Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
161
h-index:
66
/
i10-index:
212
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

Itziar Rojas et al.Jun 7, 2021
+293
N
S
I
Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease.
0

Gene expression imputation provides insight into the genetic architecture of frontotemporal dementia

Lianne Reus et al.Jun 3, 2024
+3
D
B
L
Abstract The etiology of genetically sporadic frontotemporal dementia is poorly understood. Although genome-wide association studies for frontotemporal dementia have identified a small number of candidate risk regions, most of the risk genes remain largely unknown. To identify candidate genes with predicted expression levels associated with frontotemporal dementia, we integrated genome-wide summary statistics with external reference gene expression data, using a transcriptome-wide association studies approach. FUSION software was used to leverage summary statistics on frontotemporal dementia (n=2,340 cases, n=7,252 controls) and clinical subtypes (behavioral variant frontotemporal dementia n=1,337 cases/2,754 controls; semantic dementia n=308 cases/616 controls; progressive non-fluent aphasia n=269 cases/538 controls, frontotemporal dementia with motor neuron disease n=200 cases/400 controls) from the International Frontotemporal Dementia Genomics Consortium with 53 expression quantitative loci tissue type panels (n=12,205 from five consortia). Significance was assessed using a 5% false discovery rate threshold. We identified 73 significant gene-tissue associations for frontotemporal dementia, representing 44 unique genes in 34 tissue types. Most significant findings were derived from dorsolateral prefrontal cortex splicing data (n=19 genes, 26%). Furthermore, the 17q21.31 inversion locus contained 23 significant associations, representing six unique genes whose predicted expression associated with frontotemporal dementia. Other top hits included SEC22B on chromosome 1, a gene involved in vesicle trafficking, TRGV5 on chromosome 17 and ZNF302 on chromosome 19. A single gene finding was observed for behavioral variant frontotemporal dementia (i.e., RAB38 on chromosome 11) with evidence from multiple tissue types. For the other clinical subtypes no significant associations were observed. We used transcriptome-wide association studies to prioritize candidate genes for frontotemporal dementia and identified a number of specific genes, including potential novel candidate genes (such as SEC22B ) and previously reported risk regions (e.g., 17q.21.31). Most significant associations were observed in the dorsolateral prefrontal cortex, despite the modest sample size of the gene expression reference panel of this tissue type. This suggests that our findings are specific to frontotemporal dementia and are likely to be biologically relevant highlights of genes at different frontotemporal dementia risk loci that are contributing to the disease pathology.
15

What does heritability of Alzheimer’s disease represent?

Emily Baker et al.Oct 24, 2023
+12
K
G
E
Abstract INTRODUCTION Both Alzheimer’s disease (AD) and ageing have a strong genetic component. In each case, many associated variants have been discovered, but how much missing heritability remains to be discovered is debated. Variability in the estimation of SNP-based heritability could explain the differences in reported heritability. METHODS We compute heritability in five large independent cohorts (N=7,396, 1,566, 803, 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be reached. These cohorts vary by sample size, age of cases and controls and phenotype definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding both APOE and genome-wide association study hit regions, and d) SNPs overlapping a microglia gene-set. RESULTS SNP-based heritability of Alzheimer’s disease is between 38 and 66% when age and genetic disease architecture are correctly accounted for. The heritability estimates decrease by 12% [SD=8%] on average when the APOE region is excluded and an additional 1% [SD=3%] when genome-wide significant regions were removed. A microglia gene-set explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all cohorts. CONCLUSION The heritability of neurodegenerative disorders cannot be represented as a single number, because it is dependent on the ages of cases and controls. Genome-wide association studies pick up a large proportion of total AD heritability when age and genetic architecture are correctly accounted for. Around 13% of SNP-based heritability can be explained by known genetic loci and the remaining heritability likely resides around microglial related genes. Author Summary Estimates of heritability in Alzheimer’s disease, the proportion of phenotypic variance explained by genetics, are very varied across different studies, therefore, the amount of ‘missing’ heritability not yet captured by current genome-wide association studies is debated. We investigate this in five independent cohorts, provide estimates based on these cohorts and detail necessary suggestions to accurately calculate heritability in age-related disorders. We also confirm the importance of microglia relevant genetic markers in Alzheimer’s disease. This manuscript provides suggestions for other researchers computing heritability in late-onset disorders and the microglia gene-set used in this study will be published alongside this manuscript and made available to other researchers. The correct assessment of disease heritability will aid in better understanding the amount of ‘missing heritability’ in Alzheimer’s disease.
15
Citation1
0
Save
0

Differential Brain Atrophy Patterns and Neurogenetic Profiles in Cognitively-Defined Alzheimer’s Disease Subgroups

Colin Groot et al.Jun 11, 2024
+16
S
M
C
Abstract Elucidating mechanisms underlying the clinical heterogeneity observed among individuals with Alzheimer’s disease (AD) is key to facilitate personalized treatments. We categorized 679 individuals with AD into subgroups based on a relative impairment in one cognitive domain (i.e. AD-Memory, AD-Executive-Functioning, AD-Language and AD-Visuospatial-Functioning). We compared atrophy patterns derived from MRI and identified patterns that closely matched the respective cognitive profiles, i.e. medial temporal lobe atrophy in AD-Memory, fronto-parietal in AD-Executive-Functioning, asymmetric left-temporal in AD-Language, and posterior in AD-Visuospatial-Functioning. We then determined spatial correlations between subgroup-specific atrophy and a transcriptomic atlas of gene expression, which revealed both shared (e.g. mitochondrial respiration and synaptic function/plasticity) and subgroup-specific (e.g. cell-cycle for AD-Memory, protein metabolism in AD-Language, and modification of gene expression in AD-Visuospatial-Functioning) biological pathways associated with each subgroup’s atrophy patterns. We conclude that cognitive heterogeneity in AD is related to neuroanatomical differences, and specific biological pathways may be involved in their emergence.
11

Cerebellar and subcortical atrophy contribute to psychiatric symptoms in frontotemporal dementia

Aurélie Bussy et al.Oct 24, 2023
+40
T
J
A
Abstract Recent studies have suggested that cerebellar and subcortical structures are impacted early in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau ( MAPT ), progranulin ( GRN ) and chromosome 9 open reading frame 72 ( C9orf72 ). However, the clinical contribution of the structures involved in the cerebello-subcortical circuitry has been understudied in FTD given their potentially central role in cognition and behaviour processes. The present study aims to investigate whether there is an association between the atrophy of the cerebellar and subcortical structures, and neuropsychiatric symptoms (using the revised version of the Cambridge Behavioral Inventory, CBI-R) across genetic mutations and whether this association starts during the preclinical phase of the disease. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative (GENFI) including mutation carriers (n=608) and non-carrier first-degree relatives of known symptomatic carriers (n= 375). Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed using deformation based morphometry (DBM) and partial least squares analyses (PLS) were used to link morphometry and behavioural symptoms. Our univariate results suggest that in this group of primarily presymptomatic subjects, volume loss in subcortical and cerebellar structure was primarily a function of aging, with only the C9orf72 group showing more pronounced volume loss in the thalamus compared to the non-carrier individuals. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to all neuropsychiatric symptoms from the CBI-R, with significant overlap in brain/behaviour patterns, but also specificity for each genetic group. The biggest differences were in the extent of the cerebellar involvement (larger extent in C9orf72 group) and more prominent amygdalar contribution in the MAPT group. Finally, our findings demonstrated that C9orf72 and MAPT brain scores were related to estimated years before the age of symptom onset (EYO) in a second order relationship highlighting a steeper brain score decline 20 years before expected symptom onset, while GRN brain scores were related to age and not EYO. Overall, these results demonstrated the important role of the subcortical structures and especially of the cerebellum in genetic FTD symptom expression.
1

Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes

Lianne Reus et al.Oct 24, 2023
+12
M
T
L
Genomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms in vivo , measuring 5,543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n=490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n=487). We performed metabolite quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, representing 65 unique CSF metabolites across 51 independent loci. To better understand the role of CSF mQTLs in brain-related disorders, we performed a metabolome-wide association study (MWAS), identifying 40 associations between CSF metabolites and brain traits. Similarly, over 90% of significant mQTLs demonstrated colocalized associations with brain-specific gene expression, unveiling potential neurobiological pathways.
1

Author Correction: Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

Itziar Rojas et al.Nov 25, 2023
+290
N
S
I
0

Data-driven detection of latent atrophy factors related to phenotypical variants of posterior cortical atrophy

Colin Groot et al.May 7, 2020
+12
J
B
C
Posterior cortical atrophy is a clinical-radiological syndrome characterized by visual processing deficits and atrophy in posterior parts of the brain, most often caused by Alzheimers disease pathology. Recent consensus criteria describe four distinct phenotypical variants of posterior cortical atrophy defined by clinical and radiological features; i) object perception/occipitotemporal (ventral), ii) space perception/temporoparietal (dorsal), iii) non-visual/dominant parietal and iv) primary visual (caudal). We employed a data-driven approach to identify atrophy factors related to these proposed variants in a multi-center cohort of 119 individuals with posterior cortical atrophy (age: 64 SD 7, 38% male, MMSE: 21 SD 5, 71% amyloid-B positive, 29% amyloid-B status unknown). A Bayesian modelling framework based on latent Dirichlet allocation was used to compute four latent atrophy factors in accordance with the four proposed variants. The model uses standardized gray matter density images as input (adjusted for age, sex, intracranial volume, field strength and whole-brain gray matter volume) and provides voxelwise probabilistic maps for all atrophy factors, allowing every individual to express each factor to a degree without a priori classification. The model revealed four distinct yet partially overlapping atrophy factors; right-dorsal, right-ventral, left-ventral, and limbic. Individual participant profiles revealed that the vast majority of participants expressed multiple factors, rather than predominantly expressing a single factor. To assess the relationship between atrophy factors and cognition, neuropsychological test scores covering four posterior cortical atrophy-specific cognitive domains were assessed (object perception, space perception, non-visual parietal functions and primary visual processing) and we used general linear models to examine the association between atrophy factor expression and cognition. We found that object perception and primary visual processing were associated with atrophy that predominantly reflects the right-ventral factor. Furthermore, space perception was associated with atrophy that predominantly represents the right-ventral and right-dorsal factors. Similar to the atrophy factors, most participants had mixed clinical profiles with impairments across multiple domains. However, when selecting four participants with an isolated impairment, we observed atrophy patterns and factor expressions that were largely in accordance with the hypothesized variants. Taken together, our results indicate that variants of posterior cortical atrophy exist but these constitute phenotypical extremes and most individuals fall along a broad clinical-radiological spectrum, indicating that classification into four mutually exclusive variants is unlikely to be clinically useful.
0

Immune-related genetic enrichment in frontotemporal dementia

Iris Broce et al.May 7, 2020
+176
N
C
I
Background: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Methods and findings: Using large genome-wide association studies (GWAS) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with 'FTD-related disorders' namely FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS) - and one or more immune-mediated diseases including Crohn's disease (CD), ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis (PSOR). We found up to 270-fold genetic enrichment between FTD and RA and comparable enrichment between FTD and UC, T1D, and CeD. In contrast, we found only modest genetic enrichment between any of the immune-mediated diseases and CBD, PSP or ALS. At a conjunction false discovery rate (FDR) < 0.05, we identified numerous FTD-immune pleiotropic SNPs within the human leukocyte antigen (HLA) region on chromosome 6. By leveraging the immune diseases, we also found novel FTD susceptibility loci within LRRK2 (Leucine Rich Repeat Kinase 2), TBKBP1 (TANK-binding kinase 1 Binding Protein 1), and PGBD5 (PiggyBac Transposable Element Derived 5). Functionally, we found that expression of FTD-immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with frontotemporal dementia and is enriched in microglia compared to other central nervous system (CNS) cell types. Conclusions: We show considerable immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to risk for FTD. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD.