A current debate in ecology centers on the extent to which ecosystem function depends on biodiversity. Here, we provide evidence from a long-term field manipulation of plant diversity that soil microbial communities, and the key ecosystem processes that they mediate, are significantly altered by plant species richness. After seven years of plant growth, we determined the composition and function of soil microbial communities beneath experimental plant diversity treatments containing 1–16 species. Microbial community biomass, respiration, and fungal abundance significantly increased with greater plant diversity, as did N mineralization rates. However, changes in microbial community biomass, activity, and composition largely resulted from the higher levels of plant production associated with greater diversity, rather than from plant diversity per se. Nonetheless, greater plant production could not explain more rapid N mineralization, indicating that plant diversity affected this microbial process, which controls rates of ecosystem N cycling. Greater N availability probably contributed to the positive relationship between plant diversity and productivity in the N-limited soils of our experiment, suggesting that plant–microbe interactions in soil are an integral component of plant diversity's influence on ecosystem function.