JZ
Jiepei Zhu
Author with expertise in Epidemiology and Impact of Traumatic Brain Injury
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sleep Disruption in a Mouse Model of Chronic Traumatic Brain Injury

Andrew Morris et al.Nov 14, 2023
+7
M
E
A
Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.
0

Functional connectivity, tissue microstructure and T2 at 11.1 Tesla distinguishes neuroadaptive differences in two traumatic brain injury models in rats: A Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study

Rohan Kommireddy et al.Dec 10, 2023
+10
Y
Z
R
The damage caused by contusive traumatic brain injuries (TBIs) is thought to involve breakdown in neuronal communication through focal and diffuse axonal injury along with alterations to the neuronal chemical environment, which adversely affects neuronal networks beyond the injury epicenter(s). In the present study, functional connectivity along with brain tissue microstructure coupled with T2 relaxometry were assessed in two experimental TBI models in rat, controlled cortical impact (CCI) and lateral fluid percussive injury (LFPI). Rats were scanned on an 11.1 Tesla scanner on days 2 and 30 following either CCI or LFPI. Naive controls were scanned once and used as a baseline comparison for both TBI groups. Scanning included functional magnetic resonance imaging (fMRI), diffusion weighted images (DWI), and multi-echo T2 images. fMRI scans were analyzed for functional connectivity across laterally and medially located region of interests (ROIs) across the cortical mantle, hippocampus, and dorsal striatum. DWI scans were processed to generate maps of fractional anisotropy, mean, axial, and radial diffusivities (FA, MD, AD, RD). The analyses focused on cortical and white matter (WM) regions at or near the TBI epicenter. Our results indicate that rats exposed to CCI and LFPI had significantly increased contralateral intra-cortical connectivity at 2 days post-injury. This was observed across similar areas of the cortex in both groups. The increased contralateral connectivity was still observed by day 30 in CCI, but not LFPI rats. Although both CCI and LFPI had changes in WM and cortical FA and diffusivities, WM changes were most predominant in CCI and cortical changes in LFPI. Our results provide support for the use of multimodal MR imaging for different types of contusive and skull-penetrating injury.
3

Compensatory functional connectome changes in a rat model of traumatic brain injury

Zhihui Yang et al.May 17, 2021
+11
K
Y
Z
Abstract Penetrating cortical impact injuries alter neuronal communication beyond the injury epicenter, across regions involved in affective, sensorimotor, and cognitive processing. Understanding how traumatic brain injury (TBI) reorganizes local and brain wide nodal functional interactions may provide valuable quantitative parameters for monitoring pathological progression and functional recovery. To this end, we investigated spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) signal obtained at 11.1 Tesla in rats sustaining controlled cortical impact (CCI) and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12,879 pairwise correlations between fMRI signals from 162 regions. Our data indicate that on days 2 and 30 post-CCI there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic, and basal forebrain areas. Rats imaged on day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality, and participation coefficient track early and late TBI effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to CCI may be unfavorable to brain wide communication in the early post-injury period.