MJ
Matthew Jensen
Author with expertise in Genomic Rearrangements and Copy Number Variations
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
3
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
35

Functional assessment of the “two-hit” model for neurodevelopmental defects inDrosophilaandX. laevis

Lucilla Pizzo et al.Sep 14, 2020
Abstract We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while “second-hits” in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of “second-hit” genes in Drosophila melanogaster and Xenopus laevis . We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with “second-hit” genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific “second-hit” genes (such as ARID1B and CACNA1A ), genes within neurodevelopmental pathways (such as PTEN and UBE3A ), and transcriptomic targets (such as DSCAM and TRRAP ) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, homologs of patient-specific “second-hits” enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis , leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with “second-hit” genes determine the ultimate phenotypic manifestation. Author Summary Copy-number variants, or deletions and duplications in the genome, are associated with multiple neurodevelopmental disorders. The developmental delay-associated 16p12.1 deletion is mostly inherited, and severely affected children carry an excess of “second-hits” variants compared to mildly affected carrier parents, suggesting that additional variants modulate the clinical manifestation. We studied this “two-hit” model using Drosophila and Xenopus laevis , and systematically tested how homologs of “second-hit” genes modulate neurodevelopmental defects observed for 16p12.1 homologs. We observed that 16p12.1 homologs independently led to multiple neurodevelopmental features and weakly interacted with each other, suggesting that interactions with “second-hit” homologs potentially have a higher impact towards neurodevelopmental defects than interactions between 16p12.1 homologs. We tested 212 pairwise interactions of 16p12.1 homologs with “second-hit” homologs and genes within conserved neurodevelopmental pathways, and observed modulation of neurodevelopmental defects caused by 16p12.1 homologs in 11 out of 15 families, and 16/32 of these changes could be attributed to genetic interactions. Interestingly, we observed that SETD5 homologs interacted with homologs of MOSMO , which conferred additional neuronal phenotypes not observed with knockdown of individual homologs. We propose that the 16p12.1 deletion sensitizes the genome to multiple neurodevelopmental defects, and complex interactions with “second-hit” genes determine the clinical trajectory of the disorder.
35
Citation1
0
Save
0

Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development

Tanzeen Yusuff et al.Nov 26, 2019
While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster . Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf , PPP4C/Pp4-19C , and KIF11/Klp61F . These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.AUTHOR SUMMARY Rare copy-number variants (CNVs), or large deletions and duplications in the genome, are associated with both neuronal and non-neuronal clinical features. Previous functional studies for these disorders have primarily focused on understanding the cellular mechanisms for neurological and behavioral phenotypes. To understand how genes within these CNVs contribute to developmental defects in non-neuronal tissues, we assessed 79 homologs of CNV and known neurodevelopmental genes in Drosophila models. We found that most homologs showed developmental defects when knocked down in the adult fly wing, ranging from mild size changes to severe wrinkled wings or lethality. Although a majority of homologs tested showed defects when knocked down specifically in wings and eyes, we found no correlation in the severity of the observed defects in these two tissues. A subset of the homologs showed disruptions in cellular processes in the developing fly wing, including alterations in cell proliferation, apoptosis, and cellular signaling pathways. Furthermore, human CNV genes also showed differences in gene expression patterns and interactions with signaling pathway genes across multiple human tissues. Our findings suggest that genes within CNV disorders affect global developmental processes in both neuronal and non-neuronal tissues.
0

Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity

Qingyu Wang et al.May 5, 2016
Whole Exome Sequencing (WES) is a powerful clinical diagnostic tool for discovering the genetic basis of many diseases. A major shortcoming of WES is uneven coverage of sequence reads over the exome targets contributing to many low coverage regions, which hinders accurate variant calling. In this study, we devised two novel metrics, Cohort Coverage Sparseness (CCS) and Unevenness (UE) Scores for a detailed assessment of the distribution of coverage of sequence reads. Employing these metrics we revealed non-uniformity of coverage and low coverage regions in the WES data generated by three different platforms. This non-uniformity of coverage is both local (coverage of a given exon across different platforms) and global (coverage of all exons across the genome in the given platform). The low coverage regions encompassing functionally important genes were often associated with high GC content, repeat elements and segmental duplications. While a majority of the problems associated with WES are due to the limitations of the capture methods, further refinements in WES technologies have the potential to enhance its clinical applications.
0

Gene discoveries in autism are biased towards comorbidity with intellectual disability

Matthew Jensen et al.Jul 26, 2019
Autism typically presents with a highly heterogeneous set of features, including frequent comorbidity with intellectual disability (ID). The overlap between these two phenotypes has confounded the accurate diagnosis and discovery of genetic factors associated with autism. We analyzed genetic variants in 2,290 individuals with autism from the Simons Simplex Collection (SSC) who have either ID or normal cognitive function to determine whether genes associated with autism also contribute towards ID comorbidity. We found that individuals who carried variants in a set of 173 reported autism-associated genes showed decreased IQ (p=5.49×10-6) and increased autism severity (p=0.013) compared with individuals without such variants. A subset of autism-associated genes also showed strong evidence for ID comorbidity in published case reports. We also found that individuals with high-functioning autism (IQ>100) had lower frequencies of CNVs (p=0.065) and LGD variants (p=0.021) compared with individuals who manifested both autism and ID (IQ<70). These data indicated that de novo LGD variants conferred a 1.53-fold higher risk (p=0.035) towards comorbid ID, while LGD mutations specifically disrupting autism-associated genes conferred a 4.85-fold increased risk (p=0.011) for comorbid ID. Furthermore, de novo LGD variants in individuals with high-functioning autism were more likely to disrupt genes with little functional relevance towards neurodevelopment, as demonstrated by evidence from pathogenicity metrics, expression patterns in the developing brain, and mouse model phenotypes. Overall, our data suggest that de novo pathogenic variants disrupting genes associated with autism contribute towards autism and ID comorbidity, while other genetic factors are likely to be causal for high-functioning autism.
0

Homomorphic Encryption: An Application to Polygenic Risk Scores

Elizabeth Knight et al.May 28, 2024
Abstract Background Polygenic risk scores (PRS) have emerged as a powerful tool in precision medicine, enabling personalized risk assessments for complex diseases. However, using sensitive genomic data in PRS calculations raises concerns about privacy and security. Fully Homomorphic Encryption (FHE) offers a promising solution by allowing computations on encrypted data, preserving the privacy of both genomic information and PRS models. Results In this study, we present a novel application of FHE for secure and private PRS calculations using the CKKS protocol within the Lattigo library. Our approach involves a three-party system: clients (doctors with sensitive genetic data), modelers developing a PRS (academics or a company), and evaluators (a “local hospital” running the models while maintaining data confidentiality). We demonstrate the feasibility and accuracy of our protocol by applying it to synthetic datasets of various sizes and a robust 110k-SNP model for schizophrenia. The normal PRS calculation results are essentially identical to the encrypted calculation: between the two results R 2 is .999 & MSE is 2.27 × 10 − 6 . Moreover, while the encrypted calculation is roughly 1000 times slower than conventional non-encrypted ones (when only considering the core PRS calculation), it is quite feasible on a single-CPU node - e.g. running on ° 1100 individuals with ° 110k SNPS took six minutes and°65G memory on a laptop computer. In addition, we investigate the impact of encryption parameters (modulus) on this computational time and accuracy in detail. Conclusion By enabling secure PRS calculations on encrypted genomic data, our approach addresses the pressing need for privacy-preserving solutions in the era of precision medicine. The ability to perform accurate risk assessments while maintaining patient confidentiality paves the way for broader adoption of PRS and personalized medicine in healthcare, particularly with the advent of large-scale computing power.
1

Combinatorial patterns of gene expression changes contribute to variable expressivity of the developmental delay-associated 16p12.1 deletion

Matthew Jensen et al.Mar 8, 2021
ABSTRACT Background Recent studies have suggested that individual variants do not sufficiently explain the variable expressivity of phenotypes observed in complex disorders. For example, the 16p12.1 deletion is associated with developmental delay and neuropsychiatric features in affected individuals, but is inherited in >90% of cases from a mildly-affected parent. While children with the deletion are more likely to carry additional “second-hit” variants than their parents, the mechanisms for how these variants contribute to phenotypic variability are unknown. Methods We performed detailed clinical assessments, whole-genome sequencing, and RNA sequencing of lymphoblastoid cell lines for 32 individuals in five large families with multiple members carrying the 16p12.1 deletion. We identified contributions of the 16p12.1 deletion and “second-hit” variants towards a range of expression changes in deletion carriers and their family members, including differential expression, outlier expression, alternative splicing, allele-specific expression, and expression-quantitative trait loci analyses. Results We found that the deletion dysregulates multiple autism and brain development genes such as FOXP1 , ANK3 , and MEF2 . Carrier children also showed an average of 5,323 gene expression changes compared with one or both parents, which matched with 33/39 observed developmental phenotypes. We identified significant enrichments for 13/25 classes of “second-hit” variants in genes with expression changes, where 4/25 variant classes were only enriched when inherited from the non-carrier parent, including loss-of-function SNVs and large duplications. In 11 instances, including for ZEB2 and SYNJ1 , gene expression was synergistically altered by both the deletion and inherited “second-hits” in carrier children. Finally, brain-specific interaction network analysis showed strong connectivity between genes carrying “second-hits” and genes with transcriptome alterations in deletion carriers. Conclusions Our results suggest a potential mechanism for how “second-hit” variants modulate expressivity of complex disorders such as the 16p12.1 deletion through transcriptomic perturbation of gene networks important for early development. Our work further shows that family-based assessments of transcriptome data are highly relevant towards understanding the genetic mechanisms associated with complex disorders.
0

NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and X. laevis models

Mayanglambam Singh et al.Apr 22, 2019
The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila ( Cbp20 ) and X. laevis ( ncbp2 ) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2- mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development.AUTHOR SUMMARY Rare copy-number variants, or large deletions and duplications in the genome, are associated with a wide range of neurodevelopmental disorders. The 3q29 deletion confers an increased risk for schizophrenia, autism, and microcephaly. To understand the conserved biological mechanisms that are disrupted by this deletion, we systematically tested 14 individual homologs and 314 pairwise interactions of 3q29 genes for neuronal, cellular, and developmental phenotypes in Drosophila melanogaster and Xenopus laevis models. We found that multiple homologs of genes within the deletion region contribute towards developmental defects, such as larval lethality and disrupted cellular organization. Interestingly, we found that NCBP2 acts as a key modifier gene within the region, enhancing the developmental phenotypes of each of the homologs for other 3q29 genes and leading to disruptions in apoptosis and cell cycle pathways. Our results suggest that multiple genes within the 3q29 region interact with each other through shared mechanisms and jointly contribute to neurodevelopmental defects.
Load More