GU
George Umanah
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
963
h-index:
22
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3

Xiaobo Mao et al.Sep 29, 2016
+29
S
M
X
INTRODUCTION Parkinson’s disease (PD) is the second most common neurodegenerative disorder and leads to slowness of movement, tremor, rigidity, and, in the later stages of PD, cognitive impairment. Pathologically, PD is characterized by the accumulation of α-synuclein in Lewy bodies and neurites. There is degeneration of neurons throughout the nervous system, with the degeneration of dopamine neurons in the substantia nigra pars compacta leading to the major symptoms of PD. RATIONALE In the brains of PD patients, pathologic α-synuclein seems to spread from cell to cell via self-amplification, propagation, and transmission in a stereotypical and topographical pattern among neighboring cells and/or anatomically connected brain regions. The spread or transmission of pathologic α-synuclein is emerging as a potentially important driver of PD pathogenesis. The underlying mechanisms and molecular entities responsible for the transmission of pathologic α-synuclein from cell to cell are not known, but the entry of pathologic α-synuclein into neurons is thought to occur, in part, through an active clathrin-dependent endocytic process. RESULTS Using recombinant α-synuclein preformed fibrils (PFF) as a model system with which to study the transmission of misfolded α-synuclein from neuron to neuron, we screened a library encoding transmembrane proteins for α-synuclein-biotin PFF–binding candidates via detection with streptavidin-AP (alkaline phosphatase) staining. Three positive clones were identified that bind α-synuclein PFF and include lymphocyte-activation gene 3 (LAG3), neurexin 1β, and amyloid β precursor-like protein 1 (APLP1). Of these three transmembrane proteins, LAG3 demonstrated the highest ratio of selectivity for α-synuclein PFF over the α-synuclein monomer. α-Synuclein PFF bind to LAG3 in a saturable manner (dissociation constant = 77 nM), whereas the α-synuclein monomer does not bind to LAG3. Co-immunoprecipitation also suggests that pathological α-synuclein PFF specifically bind to LAG3. Tau PFF, β-amyloid oligomer, and β-amyloid PFF do not bind to LAG3, indicating that LAG3 is specific for α-synuclein PFF. The internalization of α-synuclein PFF involves LAG3 because deletion of LAG3 reduces the endocytosis of α-synuclein PFF. LAG3 colocalizes with the endosomal guanosine triphosphatases Rab5 and Rab7 and coendocytoses with pathologic α-synuclein. Neuron-to-neuron transmission of pathologic α-synuclein and the accompanying pathology and neurotoxicity is substantially attenuated by deletion of LAG3 or by antibodies to LAG3. The lack of LAG3 also substantially delayed α-synuclein PFF–induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. CONCLUSION We discovered that pathologic α-synuclein transmission and toxicity is initiated by binding to LAG3 and that neuron-to-neuron transmission of pathological α-synuclein involves the endocytosis of exogenous α-synuclein PFF by the engagement of LAG3 on neurons. Depletion of LAG3 or antibodies to LAG3 substantially reduces the pathology set in motion by the transmission of pathologic α-synuclein. The identification of LAG3 as an α-synuclein PFF–binding protein provides a new target for developing therapeutics designed to slow the progression of PD and related α-synucleinopathies. LAG3 deletion or antibodies to LAG3 delay α-synuclein PFF transmission. Compared with wild-type neurons, binding and endocytosis of α-synuclein PFF is dramatically reduced with antibodies to LAG3 or when LAG3 is deleted, resulting in delayed pathologic α-synuclein transmission and toxicity. Illustration credit: I-Hsun Wu
0

Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease

Tae‐In Kam et al.Nov 1, 2018
+19
H
X
T
PAR promotes α-synuclein toxicity How pathologic α-synuclein (α-syn) leads to neurodegeneration in Parkinson's disease (PD) remains poorly understood. Kam et al. studied the α-syn preformed fibril (α-syn PFF) model of sporadic PD (see the Perspective by Brundin and Wyse). They found that pathologic α-syn–activated poly(adenosine 5′-diphosphate–ribose) (PAR) polymerase–1 (PARP-1) and inhibition of PARP or knockout of PARP-1 protected mice from pathology. The generation of PAR by α-syn PFF–induced PARP-1 activation converted α-syn PFF to a strain that was 25-fold more toxic, termed PAR–α-syn PFF. An increase of PAR in the cerebrospinal fluid and evidence of PARP activation in the substantia nigra of PD patients indicates that PARP activation contributes to the pathogenesis of PD through parthanatos and conversion of α-syn to a more toxic strain. Science , this issue p. eaat8407 ; see also p. 521
6

PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease

Areum Jo et al.Jul 28, 2021
+31
T
Y
A
Farnesol enhances the amounts of farnesylated PARIS and PGC-1α, preventing dopaminergic neuronal loss in Parkinson’s disease models.
6
Citation35
3
Save
0

mir-21 is associated with inactive low molecular weight Argonaute complexes in thyroid cancer cell lines

Bonita Powell et al.Mar 25, 2020
+7
Y
A
B
Thyroid cancer is the most prevalent malignancy of the endocrine system. We and others have shown that several microRNAs, which are post-transcriptional gene regulators, are aberrantly expressed in anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) tissues, as well as cell lines derived from these cancers. In the cell, miRNAs are bound to Argonaute (AGO) proteins as what could be termed low molecular weight RNA-Induced Silencing Complexes (LMW-RISCs) that can then assemble with additional proteins, mRNA, and translation machinery into high molecular weight RISCs (HMW-RISCs) that also exert regulatory function. In this study, we sought to analyze the association of miRNAs with RISC complexes in ATC and PTC. For ATC and PTC lines, miRNA species were enriched in both HMW-RISC and LMW-RISC cellular fractions, compared with intermediate molecular weight fractions and very low molecular weight (AGO-poor) fractions. Furthermore, 60% of all miRNAs were slightly more abundant in LMW-RISC versus HMW-RISC fractions by ∼2-4 fold. Surprisingly, miR-21-5p, one of the most abundant miRNAs in both ATC and PTC lines and one of the most widely studied oncogenic miRNAs in many solid tumors, was consistently one the least abundant miRNAs in HMW-RISC and the most enriched miRNA in LMW-RISC fractions. These findings may suggest that miR-21 has a role or roles distinct from canonical posttranscriptional regulation in cancer. Furthermore, the methodology described here is a useful way to assess the distribution of miR-21 between HMW and LMW-RISCs and may help to reveal the true roles of this miRNA in thyroid cancer development, progression, and treatment.