NY
Naoya Yahagi
Author with expertise in Cholesterol Metabolism and Atherosclerosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
3,264
h-index:
58
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sterol Regulatory Element-binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes

Hitoshi Shimano et al.Dec 1, 1999
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type andSREBP-1 −/− mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished inSREBP-1 −/− mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refedSREBP-1 −/− livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1 −/− mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.
0

Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity

Jun-ichi Osuga et al.Jan 18, 2000
Hormone-sensitive lipase (HSL) is known to mediate the hydrolysis not only of triacylglycerol stored in adipose tissue but also of cholesterol esters in the adrenals, ovaries, testes, and macrophages. To elucidate its precise role in the development of obesity and steroidogenesis, we generated HSL knockout mice by homologous recombination in embryonic stem cells. Mice homozygous for the mutant HSL allele (HSL−/−) were superficially normal except that the males were sterile because of oligospermia. HSL−/− mice did not have hypogonadism or adrenal insufficiency. Instead, the testes completely lacked neutral cholesterol ester hydrolase (NCEH) activities and contained increased amounts of cholesterol ester. Many epithelial cells in the seminiferous tubules were vacuolated. NCEH activities were completely absent from both brown adipose tissue (BAT) and white adipose tissue (WAT) in HSL−/− mice. Consistently, adipocytes were significantly enlarged in the BAT (5-fold) and, to a lesser extent in the WAT (2-fold), supporting the concept that the hydrolysis of triacylglycerol was, at least in part, impaired in HSL−/− mice. The BAT mass was increased by 1.65-fold, but the WAT mass remained unchanged. Discrepancy of the size differences between cell and tissue suggests the heterogeneity of adipocytes. Despite these morphological changes, HSL−/− mice were neither obese nor cold sensitive. Furthermore, WAT from HSL−/− mice retained 40% of triacylglycerol lipase activities compared with the wild-type WAT. In conclusion, HSL is required for spermatogenesis but is not the only enzyme that mediates the hydrolysis of triacylglycerol stored in adipocytes.
0

Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter

Tomohiro Yoshikawa et al.May 1, 2001
AbstractIn an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRα) and LXRβ as strong activators of the mouse SREBP-1c promoter. In the transfection studies, expression of either LXRα or -β activated the SREBP-1c promoter-luciferase gene in a dose-dependent manner. Deletion and mutation studies, as well as gel mobility shift assays, located an LXR response element complex consisting of two new LXR-binding motifs which showed high similarity to an LXR response element recently found in the ABC1 gene promoter, a reverse cholesterol transporter. Addition of an LXR ligand, 22(R)-hydroxycholesterol, increased the promoter activity. Coexpression of retinoid X receptor (RXR), a heterodimeric partner, and its ligand 9-cis-retinoic acid also synergistically activated the SREBP-1c promoter. In HepG2 cells, SREBP-1c mRNA and precursor protein levels were induced by treatment with 22(R)-hydroxycholesterol and 9-cis-retinoic acid, confirming that endogenous LXR-RXR activation can induce endogenous SREBP-1c expression. The activation of SREBP-1c by LXR is associated with a slight increase in nuclear SREBP-1c, resulting in activation of the gene for fatty acid synthase, one of its downstream genes, as measured by the luciferase assay. These data demonstrate that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism. ACKNOWLEDGMENTSWe thank N. Emoto and A. Amemiya for great help in construction of the expression library.This study was supported by the Promotion of Fundamental Studies in Health Science of the Organization for Pharmaceutical Safety and Research and health sciences research grants (Research on Human Genome and Gene Therapy) from the Ministry of Health and Welfare.ADDENDUMDuring the manuscript review process, activation of SREBP-1c expression by LXRs was reported in studies using a pharmacological LXR agonist as well as mice deficient in LXRα, LXRβ, or both (Citation25a, Citation28a). The researchers also studied the SREBP-1c promoter and found one of the LXREs that we identified in the current study. Their data, from a different approach to LXRs, and our present SREBP-1c promoter analysis data are basically consistent and confirm each other.
0

Polyunsaturated Fatty Acids Suppress Sterol Regulatory Element-binding Protein 1c Promoter Activity by Inhibition of Liver X Receptor (LXR) Binding to LXR Response Elements

Tomohiro Yoshikawa et al.Jan 1, 2002
Previous studies have demonstrated that polyunsaturated fatty acids (PUFAs) suppress sterol regulatory element-binding protein 1c (SREBP-1c) expression and, thus, lipogenesis. In the current study, the molecular mechanism for this suppressive effect was investigated with luciferase reporter gene assays using the SREBP-1c promoter in HEK293 cells. Consistent with previous data, the addition of PUFAs to the medium in the assays robustly inhibited the SREBP-1c promoter activity. Deletion and mutation of the two liver X receptor (LXR)-responsive elements (LXREs) in the SREBP-1c promoter region eliminated this suppressive effect, indicating that both LXREs are important PUFA-suppressive elements. The luciferase activities of both SREBP-1c promoter and LXRE enhancer constructs induced by co-expression of LXRalpha or -beta were strongly suppressed by the addition of various PUFAs (arachidonic acid > eicosapentaenoic acid > docosahexaenoic acid > linoleic acid), whereas saturated or mono-unsaturated fatty acids had minimal effects. Gel shift mobility and ligand binding domain activation assays demonstrated that PUFA suppression of SREBP-1c expression is mediated through its competition with LXR ligand in the activation of the ligand binding domain of LXR, thereby inhibiting binding of LXR/retinoid X receptor heterodimer to the LXREs in the SREBP-1c promoter. These data suggest that PUFAs could be deeply involved in nutritional regulation of cellular fatty acid levels by inhibiting an LXR-SREBP-1c system crucial for lipogenesis.
0

Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression

Motohiro Sekiya et al.Nov 25, 2003
Leptin-deficient ob/ob mice show many characteristics of obesity, including excess peripheral adiposity as well as severe hepatic steatosis, at least in part, due to increased hepatic lipogenesis. Polyunsaturated fatty acids (PUFAs) are not only ligands for peroxisome proliferator-activated receptor (PPAR) alpha but are also negative regulators of hepatic lipogenesis, which is thought to be mediated by the repression of sterol regulatory element-binding protein (SREBP)-1. We have previously shown that the disruption of SREBP-1 in ob/ob mice decreased their liver triglyceride storage. To examine whether PUFAs could reduce hepatic triglyceride deposition, we challenged ob/ob mice with dietary PUFA. It is demonstrated that PUFA markedly decreased the mature form of SREBP-1 protein and thereby reduced the expression of lipogenic genes such as fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1) in the livers of ob/ob mice. Consequently, the liver triglyceride content and plasma alanine aminotransferase (ALT) levels were decreased. Furthermore, both hyperglycemia and hyperinsulinemia in ob/ob mice were improved by PUFA administration, similar to the effect of PPARalpha activators. In conclusion, PUFAs ameliorate obesity-associated symptoms, such as hepatic steatosis and insulin resistance, presumably through both down-regulation of SREBP-1 and activation of PPARalpha.
0

Detection Method for Gene Doping in a Mouse Model Expressing Human Erythropoietin from Adeno-Associated Virus Vector-9

Takehito Sugasawa et al.May 29, 2024
With the rapid development of gene therapy technology in recent years, its abuse as a method of sports doping in athletics has become a concern. However, there is still room for improvement in gene-doping testing methods, and a robust animal model needs to be developed. Therefore, the purposes of this study were to establish a model of gene doping using recombinant adeno-associated virus vector-9, including the human erythropoietin gene (rAAV9-hEPO), and to establish a relevant testing method. First, it was attempted to establish the model using rAAV9-hEPO on mice. The results showed a significant increase in erythrocyte volume accompanied by an increase in spleen weight, confirming the validity of the model. Next, we attempted to detect proof of gene doping by targeting DNA and RNA. Direct proof of gene doping was detected using a TaqMan-qPCR assay with certain primers/probes. In addition, some indirect proof was identified in RNAs through the combination of a TB Green qPCR assay with RNA sequencing. Taken together, these results could provide the foundation for an effective test for gene doping in human athletes in the future.