FA
Farhan Ali
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
491
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Use of Mean Instead of Smallest Interspecific Distances Exaggerates the Size of the “Barcoding Gap” and Leads to Misidentification

Rudolf Meier et al.Oct 1, 2008
DNA barcoding is one of the best funded and most visible large-scale initiatives in systematic biology and has generated both much interest and controversy. DNA barcoding has also attracted significant support from foundations that had previously shown little interest in systematics. Yet, the project is controversial because many systematists feel that currently the conceptual foundation of DNA barcoding remains weak. This problem can only be alleviated through additional research that can lead to improved tools and concepts. Here, we scrutinize a key concept of DNA barcoding, the so-called barcoding gap (Meyer and Paulay, 2005), and use empirical data to document that it needs to be computed based on the smallest instead of the mean interspecific distances. In the literature on DNA barcoding, the “barcoding gap” (Meyer and Paulay, 2005) refers to the separation between mean intraand interspecific sequence variability for congeneric COI sequences. The barcoding gap is so essential to barcoding that a widely cited publication was dedicated to documenting these gaps across major metazoan taxa (Hebert et al., 2003b). It is also regularly mentioned in articles promoting barcoding to a broader audience (Check, 2005; Cognato and Caesar, 2006; Dasmahapatra and Mallet, 2006) and is one of the few metrics included in the Web-based identification system BOLD, “The Barcode of Life Data System,” which is a major identification tool for the DNA barcoding community (http://www.barcodinglife.org; Ratnasingham and Hebert, 2007). Large barcoding gaps are routinely used to predict DNA-barcoding success for the taxon under study (Hebert et al., 2003a, 2003b, 2004a, 2004b; Hogg and Hebert, 2004; Powers, 2004; Zehner et al., 2004; Armstrong and Ball, 2005; Ball et al., 2005; Barrett and Hebert, 2005; Lorenz et al., 2005; Saunders, 2005; Smith et al., 2005, 2006; Ward et al., 2005; Cywinska et al., 2006; Hajibabaei et al., 2006a, 2006b; Lefebure et al., 2006; Clare et al., 2007; Seifert et al., 2007). However, here we argue and document that barcoding gaps are currently incorrectly computed and that the values reported in the barcoding literature are misleading. The main problem is that the barcoding gap is generally quantified as the difference between intraspecific and mean interspecific, congeneric distances, whereas we will argue here that for species identification only the smallest interspecific distance should be used. Other authors have also pointed out that the use of smallest interspecific distances would be more appropriate (see Sperling, 2003; Moritz and Cicero, 2004; Vences et al., 2005a, 2005b; Cognato, 2006; Meier et al., 2006; Meyer and Paulay, 2005; Roe and Sperling, 2007), but currently we lack a comparative study that documents that the two measures yield different results. Here we provide evidence based on 43,137 COI sequences from 12,459 Metazoan species that barcoding gaps based on mean interspecific distances are artificially inflated and that only smallest interspecific distances correctly reflect that species identification gets more difficult as more species are sampled. Using DNA barcodes for species identification is analogous to identifying an unidentified specimen by comparing it to a reference collection of identified specimens. Initially one may compare an unidentified specimen to all identified material in the same genus, but ultimately the identification problem pares down to deciding whether a specimen belongs to one of a few, very similar, congeneric species. Determining an unidentified specimen to species is straightforward if the intraspecific variability is small—i.e., the unidentified specimen is a good match to a referenced species—and the differences between the best-matching species and the next best match is large—i.e., the specimen is a good match to only one of the referenced species. Analogously, the ease with which a query sequence can be identified to species is only dependent on how different it is from the most similar allospecific sequence, whereas its distinctness from a hypothetical “average” congeneric species does not matter (see Sperling, 2003; Moritz and Cicero, 2004; Vences et al., 2005a, 2005b; Cognato, 2006; Meier et al., 2006; Meyer and Paulay, 2005; Roe and Sperling, 2007). Yet, DNA barcoding publications and BOLD continue to report the mean instead of the smallest interspecific distances for congeneric species.
0
Paper
Citation490
0
Save
0

Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines

Farhan Ali et al.Jun 3, 2019
A subanesthetic dose of ketamine causes acute psychotomimetic symptoms and then more sustained antidepressant effects. A key targeted brain region is the prefrontal cortex, and the prevailing disinhibition hypothesis posits that N-methyl-d-aspartate receptor (NMDAR) antagonists such as ketamine may act preferentially on GABAergic neurons. However, cortical GABAergic neurons are heterogeneous. In particular, somatostatin-expressing (SST) interneurons selectively inhibit dendrites and regulate synaptic inputs, yet their response to systemic NMDAR antagonism is unknown. Here, we report that administration of ketamine acutely suppresses the activity of SST interneurons in the medial prefrontal cortex of the awake mouse. The deficient dendritic inhibition leads to greater synaptically evoked calcium transients in the apical dendritic spines of pyramidal neurons. By manipulating NMDAR signaling via GluN2B knockdown, we show that ketamine’s actions on the dendritic inhibitory mechanism has ramifications for frontal cortex-dependent behaviors and cortico-cortical connectivity. Collectively, these results demonstrate dendritic disinhibition and elevated calcium levels in dendritic spines as important local-circuit alterations driven by the administration of subanesthetic ketamine.
0

Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation

Farhan Ali et al.Jan 8, 2020
The SHANK3 gene encodes a postsynaptic scaffold protein in excitatory synapses, and its disruption is implicated in neurodevelopmental disorders such as Phelan-McDermid syndrome, autism spectrum disorder, and schizophrenia. Most studies of SHANK3 in the neocortex and hippocampus have focused on disturbances in pyramidal neurons. However, GABAergic interneurons likewise receive excitatory inputs and presumably would also be a target of constitutive SHANK3 perturbations. In this study, we characterize the prefrontal cortical microcircuit in awake mice using subcellular-resolution two-photon microscopy. We focused on a nonsense R1117X mutation, which leads to truncated SHANK3 and has been linked previously to cortical dysfunction. We find that R1117X mutants have abnormally elevated calcium transients in apical dendritic spines. The synaptic calcium dysregulation is due to a loss of dendritic inhibition via decreased NMDAR currents and reduced firing of dendrite-targeting somatostatin-expressing (SST) GABAergic interneurons. Notably, upregulation of the NMDAR subunit GluN2B in SST interneurons corrects the excessive synaptic calcium signals and ameliorates learning deficits in R1117X mutants. These findings reveal dendrite-targeting interneurons, and more broadly the inhibitory control of dendritic spines, as a key microcircuit mechanism compromised by the SHANK3 dysfunction.
0

Cumulative effects of social stress on reward-guided actions and prefrontal cortical activity

Florent Barthas et al.Oct 25, 2019
When exposed to chronic social stress, animals display behavioral changes that are relevant to depressive-like phenotypes. However, the cascading relationship between incremental stress exposure and neural dysfunctions over time remains incompletely understood. Here we characterize the longitudinal effect of social defeat on goal-directed actions and prefrontal cortical activity in mice, using a head-fixed sucrose preference task and two-photon calcium imaging. Behaviorally, stress-induced loss of reward sensitivity intensifies over days. Motivational anhedonia, the failure to translate positive reinforcements into future actions, requires multiple sessions of stress exposure to become fully established. For neural activity, individual layer 2/3 pyramidal neurons in the Cg1 and M2 subregions of the medial prefrontal cortex have heterogeneous responses to stress. Changes in ensemble activity differ significantly between susceptible and resilient animals after the first defeat session, and continue to diverge following successive stress episodes before reaching persistent abnormal levels. Collectively, these results demonstrate that the cumulative impact of an ethologically relevant stress can be observed at the level of cellular activity of individual prefrontal neurons. The distinct neural responses associated with resilience versus susceptibility raises the hypothesis that the negative impact of social stress is neutralized in resilient animals, in part through an adaptive reorganization of prefrontal cortical activity.