AM
Allan MacKenzie‐Graham
Author with expertise in Sex Determination and Differentiation in Organisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
25
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
24

A cross-species study of sex chromosome dosage effects on mammalian brain anatomy

Elisa Guma et al.Sep 1, 2022
+12
A
X
E
Summary All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) vs. XY controls. We show that total brain size is substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Controlling for global effects reveals robust and spatially convergent effects of XXY and XYY on regional brain volume in humans, but not mice. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellum, parietal, and orbitofrontal cortex) - thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT. Highlights Parallel structural neuroimaging in humans and mice with sex chromosome trisomies Divergent X- and Y-chromosome effects on human brain size, but convergent effects on regional anatomy Muted impact of additional X or Y on mouse brain, but subtle regional effects evident Evidence for conserved cross-species impact of X and Y on fronto-parietal cortices and cerebellum
24
Citation1
0
Save
0

Mouse Brain Extractor: Brain segmentation of mouse MRI using global positional encoding and SwinUNETR

Yeun Kim et al.Sep 8, 2024
+6
C
H
Y
In spite of the great progress that has been made towards automating brain extraction in human magnetic resonance imaging (MRI), challenges remain in the automation of this task for mouse models of brain disorders. Researchers often resort to editing brain segmentation results manually when automated methods fail to produce accurate delineations. However, manual corrections can be labor-intensive and introduce interrater variability. This motivated our development of a new deep-learning-based method for brain segmentation of mouse MRI, which we call Mouse Brain Extractor. We adapted the existing SwinUNETR architecture (Hatamizadeh et al., 2021) with the goal of making it more robust to scale variance. Our approach is to supply the network model with supplementary spatial information in the form of absolute positional encoding. We use a new scheme for positional encoding, which we call Global Positional Encoding (GPE). GPE is based on a shared coordinate frame that is relative to the entire input image. This differs from the positional encoding used in SwinUNETR, which solely employs relative pairwise image patch positions. GPE also differs from the conventional absolute positional encoding approach, which encodes position relative to a subimage rather than the entire image. We trained and tested our method on a heterogeneous dataset of N=223 mouse MRI, for which we generated a corresponding set of manually-edited brain masks. These data were acquired previously in other studies using several different scanners and imaging protocols and included in vivo and ex vivo images of mice with heterogeneous brain structure due to different genotypes, strains, diseases, ages, and sexes. We evaluated our method's results against those of seven existing rodent brain extraction methods and two state-of-the art deep-learning approaches, nnU-Net (Isensee et al., 2018) and SwinUNETR. Overall, our proposed method achieved average Dice scores on the order of 0.98 and average HD95 measures on the order of 100μm when compared to the manually-labeled brain masks. In statistical analyses, our method significantly outperformed the conventional approaches and performed as well as or significantly better than the nnU-Net and SwinUNETR methods. These results suggest that Global Positional Encoding provides additional contextual information that enables our Mouse Brain Extractor to perform competitively on datasets containing multiple resolutions.