AJ
Amit Joshi
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
6,543
h-index:
55
/
i10-index:
128
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Attributes and predictors of long COVID

Carole Sudre et al.Mar 10, 2021
Reports of long-lasting coronavirus disease 2019 (COVID-19) symptoms, the so-called ‘long COVID’, are rising but little is known about prevalence, risk factors or whether it is possible to predict a protracted course early in the disease. We analyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app1. A total of 558 (13.3%) participants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks. Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex. Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76–4.50)). A simple model to distinguish between short COVID and long COVID at 7 days (total sample size, n = 2,149) showed an area under the curve of the receiver operating characteristic curve of 76%, with replication in an independent sample of 2,472 individuals who were positive for severe acute respiratory syndrome coronavirus 2. This model could be used to identify individuals at risk of long COVID for trials of prevention or treatment and to plan education and rehabilitation services. Analysis of data from the COVID Symptom Study app reveals fatigue, headache, dyspnea and anosmia as key attributes of long COVID, with those experiencing five or more symptoms during the first week of being at increased risk of prolonged disease.
0

Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study

Long Nguyen et al.Jul 31, 2020
BackgroundData for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk.MethodsWe did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov, NCT04331509.FindingsAmong 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93–12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37–3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors.InterpretationIn the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed.FundingZoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.
0
Citation1,994
0
Save
0

Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States

Paige Maas et al.May 26, 2016

Importance

 An improved model for risk stratification can be useful for guiding public health strategies of breast cancer prevention. 

Objective

 To evaluate combined risk stratification utility of common low penetrant single nucleotide polymorphisms (SNPs) and epidemiologic risk factors. 

Design, Setting, and Participants

 Using a total of 17 171 cases and 19 862 controls sampled from the Breast and Prostate Cancer Cohort Consortium (BPC3) and 5879 women participating in the 2010 National Health Interview Survey, a model for predicting absolute risk of breast cancer was developed combining information on individual level data on epidemiologic risk factors and 24 genotyped SNPs from prospective cohort studies, published estimate of odds ratios for 68 additional SNPs, population incidence rate from the National Cancer Institute-Surveillance, Epidemiology, and End Results Program cancer registry and data on risk factor distribution from nationally representative health survey. The model is used to project the distribution of absolute risk for the population of white women in the United States after adjustment for competing cause of mortality. 

Exposures

 Single nucleotide polymorphisms, family history, anthropometric factors, menstrual and/or reproductive factors, and lifestyle factors. 

Main Outcomes and Measures

 Degree of stratification of absolute risk owing to nonmodifiable (SNPs, family history, height, and some components of menstrual and/or reproductive history) and modifiable factors (body mass index [BMI; calculated as weight in kilograms divided by height in meters squared], menopausal hormone therapy [MHT], alcohol, and smoking). 

Results

 The average absolute risk for a 30-year-old white woman in the United States developing invasive breast cancer by age 80 years is 11.3%. A model that includes all risk factors provided a range of average absolute risk from 4.4% to 23.5% for women in the bottom and top deciles of the risk distribution, respectively. For women who were at the lowest and highest deciles of nonmodifiable risks, the 5th and 95th percentile range of the risk distribution associated with 4 modifiable factors was 2.9% to 5.0% and 15.5% to 25.0%, respectively. For women in the highest decile of risk owing to nonmodifiable factors, those who had low BMI, did not drink or smoke, and did not use MHT had risks comparable to an average woman in the general population. 

Conclusions and Relevance

 This model for absolute risk of breast cancer including SNPs can provide stratification for the population of white women in the United States. The model can also identify subsets of the population at an elevated risk that would benefit most from risk-reduction strategies based on altering modifiable factors. The effectiveness of this model for individual risk communication needs further investigation.
0
Citation321
0
Save
0

Adjusting for Heritable Covariates Can Bias Effect Estimates in Genome-Wide Association Studies

Hugues Aschard et al.Jan 29, 2015
In recent years, a number of large-scale genome-wide association studies have been published for human traits adjusted for other correlated traits with a genetic basis. In most studies, the motivation for such an adjustment is to discover genetic variants associated with the primary outcome independently of the correlated trait. In this report, we contend that this objective is fulfilled when the tested variants have no effect on the covariate or when the correlation between the covariate and the outcome is fully explained by a direct effect of the covariate on the outcome. For all other scenarios, an unintended bias is introduced with respect to the primary outcome as a result of the adjustment, and this bias might lead to false positives. Here, we illustrate this point by providing examples from published genome-wide association studies, including large meta-analysis of waist-to-hip ratio and waist circumference adjusted for body mass index (BMI), where genetic effects might be biased as a result of adjustment for body mass index. Using both theory and simulations, we explore this phenomenon in detail and discuss the ramifications for future genome-wide association studies of correlated traits and diseases. In recent years, a number of large-scale genome-wide association studies have been published for human traits adjusted for other correlated traits with a genetic basis. In most studies, the motivation for such an adjustment is to discover genetic variants associated with the primary outcome independently of the correlated trait. In this report, we contend that this objective is fulfilled when the tested variants have no effect on the covariate or when the correlation between the covariate and the outcome is fully explained by a direct effect of the covariate on the outcome. For all other scenarios, an unintended bias is introduced with respect to the primary outcome as a result of the adjustment, and this bias might lead to false positives. Here, we illustrate this point by providing examples from published genome-wide association studies, including large meta-analysis of waist-to-hip ratio and waist circumference adjusted for body mass index (BMI), where genetic effects might be biased as a result of adjustment for body mass index. Using both theory and simulations, we explore this phenomenon in detail and discuss the ramifications for future genome-wide association studies of correlated traits and diseases. Adjustment for covariates or correlated secondary traits in genome-wide association studies (GWASs) can have two purposes: first, to account for potential confounding factors that can bias SNP effect estimates, and second, to improve statistical power by reducing residual variance. For example, researchers routinely adjust for principal components of individual genotypes to account for population structure,1Price A.L. Patterson N.J. Plenge R.M. Weinblatt M.E. Shadick N.A. Reich D. Principal components analysis corrects for stratification in genome-wide association studies.Nat. Genet. 2006; 38: 904-909Crossref PubMed Scopus (6867) Google Scholar or principal components of gene expression to capture batch effects in gene-expression analysis.2Pickrell J.K. Marioni J.C. Pai A.A. Degner J.F. Engelhardt B.E. Nkadori E. Veyrieras J.B. Stephens M. Gilad Y. Pritchard J.K. Understanding mechanisms underlying human gene expression variation with RNA sequencing.Nature. 2010; 464: 768-772Crossref PubMed Scopus (942) Google Scholar Besides confounding factors, human traits can also be adjusted for correlated environmental or demographic factors such as gender and age to increase statistical power.3Mefford J. Witte J.S. The Covariate’s Dilemma.PLoS Genet. 2012; 8: e1003096Crossref PubMed Scopus (38) Google Scholar, 4Pirinen M. Donnelly P. Spencer C. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies.Ann. Appl. Stat. 2013; 7: 369-390Crossref Scopus (69) Google Scholar The intuition here is that accounting for a true risk factor decreases the residual variance of the outcome and therefore increases the ratio of the true effect size of a predictor of interest over the total phenotypic variance, which leads to increased statistical power. Recently, researchers have conducted GWAS of human traits and diseases while adjusting for other heritable covariates with the motivation of identifying genetic variants associated only with the primary outcome.5Kaplan R.C. Petersen A.K. Chen M.H. Teumer A. Glazer N.L. Döring A. Lam C.S. Friedrich N. Newman A. Müller M. et al.A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3.Hum. Mol. Genet. 2011; 20: 1241-1251Crossref PubMed Scopus (58) Google Scholar, 6Heid I.M. Jackson A.U. Randall J.C. Winkler T.W. Qi L. Steinthorsdottir V. Thorleifsson G. Zillikens M.C. Speliotes E.K. Mägi R. et al.MAGICMeta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.Nat. Genet. 2010; 42: 949-960Crossref PubMed Scopus (722) Google Scholar, 7Manning A.K. Hivert M.F. Scott R.A. Grimsby J.L. Bouatia-Naji N. Chen H. Rybin D. Liu C.T. Bielak L.F. Prokopenko I. et al.DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumMultiple Tissue Human Expression Resource (MUTHER) ConsortiumA genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.Nat. Genet. 2012; 44: 659-669Crossref PubMed Scopus (566) Google Scholar, 8Randall J.C. Winkler T.W. Kutalik Z. Berndt S.I. Jackson A.U. Monda K.L. Kilpeläinen T.O. Esko T. Mägi R. Li S. et al.DIAGRAM ConsortiumMAGIC InvestigatorsSex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.PLoS Genet. 2013; 9: e1003500Crossref PubMed Scopus (273) Google Scholar, 9Scott R.A. Lagou V. Welch R.P. Wheeler E. Montasser M.E. Luan J. Mägi R. Strawbridge R.J. Rehnberg E. Gustafsson S. et al.DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.Nat. Genet. 2012; 44: 991-1005Crossref PubMed Scopus (613) Google Scholar An important difference between environmental/demographic factors and heritable human traits is that the latter have genetic associations. Therefore, a genetic variant can in theory be associated with both the primary outcome and the covariate used for adjustment. When that happens, the adjusted and unadjusted estimated effects of the genetic variant on the outcome will differ. If the correlation between the covariate and the outcome results from a direct effect of the covariate on the outcome (Figure 1A), the adjusted and unadjusted estimates correspond to the direct (i.e., not mediated through the covariate) and total (i.e., direct + indirect) genetic effect of the variant on the outcome, respectively. In all other situations where the observed correlation is due to shared genetic and/or environmental risk factors, the adjusted estimate can be biased relative to the true direct effect. To understand when a bias is introduced, consider the causal diagrams for a single genetic variant g, an outcome of interest Y, and a covariate C (Figures 1B–1D). Besides the genetic variant in question, the two variables, Y and C, are influenced by either other genetic loci, which we denote by G-g, or other environment factors and noise, denoted by E. For simplicity, assume that the genetic variant g and other causal factors, G-g and E, are uncorrelated. Furthermore, assume that the covariate C and the outcome of interest, Y are correlated through (G-g,E). If we are interested in estimating the direct effect of g on Y (the black arrow in Figure 1), then in scenario from Figure 1B adjusting for the covariate C does not bias the effect estimate and increases the power as we implicitly adjust for some environmental and other (uncorrelated) shared genetic effects. However, in scenario from Figure 1C where g only influences the covariate and not the outcome, adjusting for the covariate induces an association between the genetic variant and Y. The strength of this association depends on ρCY, the correlation between the covariate and the outcome due to shared risk factors, and the strength of βC, the effect of the genetic variant on the covariate. For normalized g, C, and Y with mean 0 and variance 1, the bias of the genetic effect estimate, βˆY, on the covariate adjusted trait is approximately equal to −βCρCY when βC is small and sample size is sufficiently large (see Appendix A). Finally, consider scenario from Figure 1D, where both the covariate and the outcome are influenced by the genetic variant. Here, the association between the genetic variant and the covariate will bias the estimated genetic effect on the outcome by the same amount as before, i.e., −βCρCY. This bias observed is illustrated in Figure 2A, and as expected, it is well approximated by the product between the direct genetic effect estimate on the covariate and the correlation between the outcome and the covariate. As shown in Figure 2B, this bias leads to increased false discovery rates under the null (no direct effect of the genetic variant on the outcome). This phenomenon also implies that when there truly is a direct genetic effect on the outcome, the adjusted statistical test can have increased power to detect the genetic variant, as compared to the unadjusted test, if the genetic effect and the phenotypic correlation are in opposite directions (Figure S2, left panel). Conversely, if the genetic effect and the correlation are in the same direction, the adjusted statistical test has, in many cases, a decreased power to detect the genetic variant (Figure S2, right panel). The difficulty of estimating direct effects of genetic variants on a covariate-adjusted outcome is well appreciated in causal inference literature10Pearl J. Causal inference from indirect experiments.Artif. Intell. Med. 1995; 7: 561-582Abstract Full Text PDF PubMed Scopus (46) Google Scholar and by many epidemiologists,11Greenland S. Pearl J. Robins J.M. Causal diagrams for epidemiologic research.Epidemiology. 1999; 10: 37-48Crossref PubMed Scopus (2503) Google Scholar, 12Schisterman E.F. Cole S.R. Platt R.W. Overadjustment bias and unnecessary adjustment in epidemiologic studies.Epidemiology. 2009; 20: 488-495Crossref PubMed Scopus (1208) Google Scholar, 13Hernán M.A. Hernández-Díaz S. Werler M.M. Mitchell A.A. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology.Am. J. Epidemiol. 2002; 155: 176-184Crossref PubMed Scopus (979) Google Scholar but has received little attention in the context of GWASs.14Vansteelandt S. Goetgeluk S. Lutz S. Waldman I. Lyon H. Schadt E.E. Weiss S.T. Lange C. On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects.Genet. Epidemiol. 2009; 33: 394-405Crossref PubMed Scopus (39) Google Scholar In Appendix B, we review 15 scenarios depicted as direct acyclic graphs in Figure S1 where adjusting for a covariate is either recommended or not and validated the interpretation of each case through simulation (see Table S3). In the absence of a clear underlying causal model or diagram, one cannot guarantee that effect estimates for covariate adjusted outcomes correspond to the desired estimates (e.g., direct versus total genetic effect). In GWASs, the potential presence of bias due to adjustment is proportional to the product of βC and ρCY. Hence, adjusting for a covariate that does not have a genetic component, such as an environmental exposure, will not bias the estimate for the genotype effect on the outcome of interest as βC = 0. On the other hand, when adjusting for a covariate that has a genetic component (potentially βC ≠ 0), then the adjusted association signals can be difficult to interpret, because it does not necessarily imply an association with the outcome of interest only but can correspond also to a bivariate signal on Y and C, or in some extreme case to an association with the covariate only. Therefore, unless we can unequivocally determine which model in Figure 1 is the right one or rule out an effect from the genetic variant on the covariate, the reported adjusted associations should be considered with caution. For illustrative purpose, we considered the SNPs reported to be associated at genome-wide significance levels with waist hip ratio (WHR) or waist circumference (WC), after adjustment on BMI.6Heid I.M. Jackson A.U. Randall J.C. Winkler T.W. Qi L. Steinthorsdottir V. Thorleifsson G. Zillikens M.C. Speliotes E.K. Mägi R. et al.MAGICMeta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.Nat. Genet. 2010; 42: 949-960Crossref PubMed Scopus (722) Google Scholar, 8Randall J.C. Winkler T.W. Kutalik Z. Berndt S.I. Jackson A.U. Monda K.L. Kilpeläinen T.O. Esko T. Mägi R. Li S. et al.DIAGRAM ConsortiumMAGIC InvestigatorsSex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.PLoS Genet. 2013; 9: e1003500Crossref PubMed Scopus (273) Google Scholar The observed correlations between BMI and WHR and between BMI and WC in the GIANT data are 0.49 and 0.85, respectively (see Appendix C). Table 1 displays the gender-specific significant SNPs from these studies and the summary statistics that we extracted from the GIANT consortium website. It shows that SNPs harboring opposite marginal effects on the two traits are significantly enriched (p = 0.005). This agrees well with theory and our simulations showing increased power when the SNP has effect in opposite directions on the outcome and the covariate (Figure S2A). In the absence of a genetic effect on BMI, we expect the number of SNPs with opposite directions of effect estimates to follow a binomial distribution with probability of 0.5 (see Appendix C and Figure S3). The observed enrichment of SNPs with opposite directions indicates that a substantial fraction of those SNPs are associated with BMI in the opposite direction. Indeed, when removing the SNPs with the most significant marginal associations with BMI, the fraction of variants displaying an opposite effect becomes non-significant (Figure S4). None of the SNPs with opposite effects on BMI and either WHR or WC show significant marginal association with BMI after correction for multiple testing (although 5 out of 23 are nominally significant). However, as shown in Figure S2B, even non-significant genetic effects on the covariate can influence power when correlation between the outcome and the covariate is large (e.g., ≥ 0.5). To assess whether the p values from the adjusted analysis reflect direct genetic effects on the outcome or a mixture of effects on the outcome and the covariate, we derived a statistical test of whether the BMI-adjusted effect of a SNP, βˆYadj, was equal to its expectation when βC = 0, which is βˆY. This test only uses GWAS summary information and the correlation between the covariate and the phenotype (see Appendix A). It is approximately equivalent to testing for the marginal effect of the SNP on the covariate in the exact same set of subjects used in the adjusted analysis. To verify this, we conducted a GWAS of WHR, BMI, and WHR adjusted for BMI for 15,949 individuals on more than 6 million SNPs and found the correlation between the two test statistics, the direct marginal and the proposed one based on GWAS summary level information, to be 0.98 (see Appendix A). We then applied our test to the WHR and WC GWAS summary statistics to test for a direct genetic effect on BMI among the reported SNP associations from the GIANT study (see Table 1) as we did not have access to the marginal associations for BMI in the same samples. We observed that half of the reported associations with WHR adjusted for BMI are likely influenced by a (direct) genetic association with BMI. This does not mean that those SNPs have no effect on WHR; in fact, their marginal (unadjusted) associations with WHR and BMI suggest that most of these loci are truly associated with WHR. Instead, this means that the reported effect estimates and the p values in the covariate adjusted analysis should be interpreted with caution, because they are not necessarily representative of the direct genetic effect on WHR and WC.Table 1Estimates and p Values of Genetic Effects from the GIANT Study for Genetic Variants Found Associated with Waist to Hip Ratio and Waist Circumference after Adjusting for Body Mass IndexMarkerNameA1A2FrequencyEstimated EffectsOpposite EffectReferencePβ.deviationap value from the test of βˆYadj = βˆY.WHR adjusted for BMI in womenBMI (pval)WHR (pval)WHRadjBMI (pval)rs9491696cg0.4800−0.0068(2.7E-01)−0.0479(1.0E-11)−0.0472(1.6E-12)Heid et al.0.81rs6905288ag0.5620−0.0083(2.4E-01)0.0484(4.7E-10)0.0523(7.7E-13)XHeid et al.0.22rs984222cg0.63500.0108(8.5E-02)-0.0284(9.0E-05)-0.0359(1.2E-07)XHeid et al.0.012rs1055144tc0.2100-0.0126(1.1E-01)0.0314(4.2E-04)0.0398(2.3E-06)XHeid et al.0.021rs10195252tc0.5990-0.0184(3.3E-03)0.0447(7.0E-10)0.0529(6.3E-15)XHeid et al.0.0061rs4846567tg0.71700.0098(1.4E-01)-0.0543(5.3E-12)-0.0641(4.7E-18)XHeid et al.0.0025rs1011731ag0.4280−0.0058(3.5E-01)−0.0280(7.0E-05)−0.0284(2.1E-05)Heid et al.0.89rs718314ag0.25900.0077(2.7E-01)−0.0444(3.9E-08)−0.0467(8.3E-10)XHeid et al.0.49rs1294421tg0.6130−0.0007(9.1E-01)−0.0357(1.2E-06)−0.0380(3.4E-08)Heid et al.0.45rs1443512ac0.2390−0.0014(8.5E-01)0.0415(7.6E-07)0.0479(1.4E-09)XHeid et al.0.063rs6795735tc0.59400.0114(6.4E-02)-0.0264(2.2E-04)-0.0330(7.9E-07)XHeid et al.0.023rs4823006ag0.56900.0046(4.6E-01)0.0337(3.4E-06)0.0366(6.9E-08)Heid et al.0.33rs6717858tc0.5417-0.0185(3.1E-03)0.0439(8.1E-10)0.0536(2.8E-15)XRandall et al.0.00072rs2820443tc.-0.0099(1.4E-01)0.0544(4.8E-12)0.0643(3.7E-18)XRandall et al.0.0025rs1358980tc0.4500-0.0148(3.8E-02)0.0498(7.1E-10)0.0565(1.1E-13)XRandall et al.0.041rs2371767cg0.20830.0199(4.1E-03)-0.0302(1.2E-04)-0.0418(1.6E-08)XRandall et al.0.00040rs10478424at0.7833−0.0052(5.1E-01)0.0320(3.3E-04)0.0372(1.0E-05)XRandall et al.0.16rs4684854cg0.43330.0025(7.0E-01)0.0401(7.6E-08)0.0396(2.4E-08)Randall et al.0.88WC adjusted for BMI in womenBMI (pval)WC (pval)WCadjBMI (pval)rs11743303ag0.80.0078(3.2E-01)−0.0186(3.7E-02)−0.0276(2.3E-06)XRandall et al.0.12WHR adjusted for BMI in menBMI (pval)WHR (pval)WHRadjBMI (pval)rs9491696cg0.48000.0004(9.5E-01)−0.0295(1.1E-04)−0.0255(1.7E-04)XRandall et al.0.26rs984222cg0.63500.0146(2.4E-02)-0.0299(1.3E-04)-0.0407(3.3E-09)XRandall et al.0.0030rs1055144tc0.2100−0.0007(9.3E-01)0.0273(4.3E-03)0.0289(6.0E-04)XRandall et al.0.72rs1011731ag0.42800.0082(2.0E-01)−0.0307(5.4E-05)−0.0341(4.9E-07)XRandall et al.0.34SNPs nominally significant for the test of bias (Pβ.deviation < 0.05) are indicated in bold.a p value from the test of βˆYadj = βˆY. Open table in a new tab SNPs nominally significant for the test of bias (Pβ.deviation < 0.05) are indicated in bold. We extended our analysis to other GWAS of covariate adjusted outcomes and found evidence that reported genetic associations with the primary outcome were in part explained by the effect of the SNP on the covariate. For example, the SNP rs11977526 has been reported to be associated with insulin-like growth factor-binding protein-3 (IGFBP3 [MIM 146732]) at very high significance level 3.3 × 10−101 while no association was observed for Insulin-like growth factor-I (IGF1 [MIM 147440]) before any adjustment.5Kaplan R.C. Petersen A.K. Chen M.H. Teumer A. Glazer N.L. Döring A. Lam C.S. Friedrich N. Newman A. Müller M. et al.A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3.Hum. Mol. Genet. 2011; 20: 1241-1251Crossref PubMed Scopus (58) Google Scholar The IGF1 analysis adjusted for IGFBP3 displays a genetic association with rs11977526 (p = 1.9 × 10−26) with estimate going in the opposite direction of the rs11977526/IGFBP3 association while IGFBP3 and IGF1 are positively correlated (>0.7).15Juul A. Dalgaard P. Blum W.F. Bang P. Hall K. Michaelsen K.F. Müller J. Skakkebaek N.E. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation.J. Clin. Endocrinol. Metab. 1995; 80: 2534-2542Crossref PubMed Google Scholar, 16Chan J.M. Stampfer M.J. Ma J. Gann P. Gaziano J.M. Pollak M. Giovannucci E. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer.J. Natl. Cancer Inst. 2002; 94: 1099-1106Crossref PubMed Scopus (396) Google Scholar This indicates that the observed rs11977526/IGF1adj.IGFBP-3 association is likely driven by the rs11977526/IGFBP3 association. In a secondary analysis, Thorleifsson et al.17Thorleifsson G. Walters G.B. Gudbjartsson D.F. Steinthorsdottir V. Sulem P. Helgadottir A. Styrkarsdottir U. Gretarsdottir S. Thorlacius S. Jonsdottir I. et al.Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity.Nat. Genet. 2009; 41: 18-24Crossref PubMed Scopus (1066) Google Scholar tested whether SNPs found to be associated with BMI or weight were also associated with type 2 diabetes (T2D) with or without adjustment for BMI. Most p values for association between those SNPs and T2D were less significant after adjustment for BMI, consistent with a direct effect of BMI on T2D; i.e., BMI is a mediator of the genetic effect (Figure 1A). However, a handful of them had opposite effects, which increased signal in the adjusted analysis (see Table S1). Those signals might be partly explained by the genetic association with BMI, indicating that Figures 1C and 1D might fit the data as well. However, this analysis was conducted on case-control data, ascertained to oversample T2D cases, raising additional complexities in the interpretation of these results.4Pirinen M. Donnelly P. Spencer C. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies.Ann. Appl. Stat. 2013; 7: 369-390Crossref Scopus (69) Google Scholar, 18Zaitlen N. Lindström S. Pasaniuc B. Cornelis M. Genovese G. Pollack S. Barton A. Bickeböller H. Bowden D.W. Eyre S. et al.Informed conditioning on clinical covariates increases power in case-control association studies.PLoS Genet. 2012; 8: e1003032Crossref PubMed Scopus (54) Google Scholar Several other large-scale heritable-trait-adjusted GWAS have been conducted.9Scott R.A. Lagou V. Welch R.P. Wheeler E. Montasser M.E. Luan J. Mägi R. Strawbridge R.J. Rehnberg E. Gustafsson S. et al.DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.Nat. Genet. 2012; 44: 991-1005Crossref PubMed Scopus (613) Google Scholar, 19Stergiakouli E. Gaillard R. Tavare J.M. Balthasar N. Loos R.J. Taal H.R. Evans D.M. Rivadeneira F. St Pourcain B. Uitterlinden A.G. et al.Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3.Obesity. 2014; 22: 2252-2259Crossref PubMed Scopus (54) Google Scholar, 20Loth D.W. Artigas M.S. Gharib S.A. Wain L.V. Franceschini N. Koch B. Pottinger T.D. Smith A.V. Duan Q. Oldmeadow C. et al.Genome-wide association analysis identifies six new loci associated with forced vital capacity.Nat. Genet. 2014; 46: 669-677Crossref PubMed Scopus (105) Google Scholar, 21Hancock D.B. Eijgelsheim M. Wilk J.B. Gharib S.A. Loehr L.R. Marciante K.D. Franceschini N. van Durme Y.M. Chen T.H. Barr R.G. et al.Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function.Nat. Genet. 2010; 42: 45-52Crossref PubMed Scopus (477) Google Scholar Among those we explored, all displayed enrichment for genetic variants showing nominal significance association with the covariate considered, genetic variants with opposite effect on the outcome and the covariate, or both (see Table S2). Finally, this concept of biased associations in covariate adjusted analysis can be extended to other effect measures. In particular, the heritability of a phenotype adjusted for a covariate, commonly reported,22Mills G.W. Avery P.J. McCarthy M.I. Hattersley A.T. Levy J.C. Hitman G.A. Sampson M. Walker M. Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to type 2 diabetes.Diabetologia. 2004; 47: 732-738Crossref PubMed Scopus (105) Google Scholar, 23Stein C.M. Guwatudde D. Nakakeeto M. Peters P. Elston R.C. Tiwari H.K. Mugerwa R. Whalen C.C. Heritability analysis of cytokines as intermediate phenotypes of tuberculosis.J. Infect. Dis. 2003; 187: 1679-1685Crossref PubMed Scopus (50) Google Scholar, 24Post W.S. Larson M.G. Myers R.H. Galderisi M. Levy D. Heritability of left ventricular mass: the Framingham Heart Study.Hypertension. 1997; 30: 1025-1028Crossref PubMed Scopus (182) Google Scholar, 25Murabito J.M. Guo C.Y. Fox C.S. D’Agostino R.B. Heritability of the ankle-brachial index: the Framingham Offspring study.Am. J. Epidemiol. 2006; 164: 963-968Crossref PubMed Scopus (58) Google Scholar, 26Shah S.H. Hauser E.R. Bain J.R. Muehlbauer M.J. Haynes C. Stevens R.D. Wenner B.R. Dowdy Z.E. Granger C.B. Ginsburg G.S. et al.High heritability of metabolomic profiles in families burdened with premature cardiovascular disease.Mol. Syst. Biol. 2009; 5: 258Crossref PubMed Scopus (128) Google Scholar can also be biased by the genetic component of the covariate and therefore might not necessarily represent the genetic component of the primary outcome. Similarly cross-trait heritability or genetic correlations between covariate adjusted phenotypes, as measured by Lee et al.,27Lee S.H. Ripke S. Neale B.M. Faraone S.V. Purcell S.M. Perlis R.H. Mowry B.J. Thapar A. Goddard M.E. Witte J.S. et al.Cross-Disorder Group of the Psychiatric Genomics ConsortiumInternational Inflammatory Bowel Disease Genetics Consortium (IIBDGC)Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.Nat. Genet. 2013; 45: 984-994Crossref PubMed Scopus (1592) Google Scholar might also be biased. Assuming an extended model from Figure 1D, the genetic component of the adjusted trait would correspond to a heterogeneous mixture of trait-specific genetic loci and shared loci with either effect in the same direction or effect in opposite direction (Figure 3). In theory, one can expect the heritability of an adjusted trait to be larger than the heritability of the unadjusted trait (Figure 3C). Cross-trait heritability estimates would provide a more comprehensive answer to the genetic variance overlap between correlated traits, although it is unclear how genetic effects in opposite direction for positively correlated traits (or conversely) are handled by these methods. Overall, when the goal is to identify genetic variants that are directly associated with a primary outcome, we were unable to identify an alternative approach that adjusts for a covariate and leads to unbiased effect estimates for a heritable covariate that is associated with the tested variant (see Appendix D). Therefore, unless we know with certainty that the tested variant does not influence the covariate, we recommend that the inclusion of such heritable covariates in the model should be avoided. Given evidence for a large number of pleiotropic genes across complex traits,28Cotsapas C. Voight B.F. Rossin E. Lage K. Neale B.M. Wallace C. Abecasis G.R. Barrett J.C. Behrens T. Cho J. et al.FOCiS Network of ConsortiaPervasive sharing of genetic effects in autoimmune disease.PLoS Genet. 2011; 7: e1002254Crossref PubMed Scopus (401) Google Scholar, 29Sivakumaran S. Agakov F. Theodoratou E. Prendergast J.G. Zgaga L. Manolio T. Rudan I. McKeigue P. Wilson J.F. Campbell H. Abundant pleiotropy in human complex diseases and traits.Am. J. Hum. Genet. 2011; 89: 607-618Abstract Full Text Full Text PDF PubMed Scopus (344) Google Scholar, 30Andreassen O.A. Djurovic S. Thompson W.K. Schork A.J. Kendler K.S. O’Donovan M.C. Rujescu D. Werge T. van de Bunt M. Morris A.P. et al.International Consortium for Blood Pressure GWASDiabetes Genetics Replication and Meta-analysis ConsortiumPsychiatric Genomics Consortium Schizophrenia Working GroupImproved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors.Am. J. Hum. Genet. 2013; 92: 197-209Abstract Full Text Full Text PDF PubMed Scopus (307) Google Scholar it seems unlikely that any heritable covariates with a complex genetic architecture, e.g., BMI or WHR, will fulfill that condition. Including such covariates in the absence of a strong prior knowledge on the pathophysiology is therefore likely to lead to biased effect estimates. In some instances, the aim of an adjusted analysis is to increase statistical power rather than detect unbiased direct effects. In these instances, we suggest using multivariate approaches31Aschard H. Vilhjálmsson B.J. Greliche N. Morange P.E. Trégouët D.A. Kraft P. Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies.Am. J. Hum. Genet. 2014; 94: 662-676Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar, 32Zhou X. Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies.Nat
0
Citation266
0
Save
0

Stability of the human faecal microbiome in a cohort of adult men

Raaj Mehta et al.Jan 12, 2018
Characterizing the stability of the gut microbiome is important to exploit it as a therapeutic target and diagnostic biomarker. We metagenomically and metatranscriptomically sequenced the faecal microbiomes of 308 participants in the Health Professionals Follow-Up Study. Participants provided four stool samples—one pair collected 24–72 h apart and a second pair ~6 months later. Within-person taxonomic and functional variation was consistently lower than between-person variation over time. In contrast, metatranscriptomic profiles were comparably variable within and between subjects due to higher within-subject longitudinal variation. Metagenomic instability accounted for ~74% of corresponding metatranscriptomic instability. The rest was probably attributable to sources such as regulation. Among the pathways that were differentially regulated, most were consistently over- or under-transcribed at each time point. Together, these results suggest that a single measurement of the faecal microbiome can provide long-term information regarding organismal composition and functional potential, but repeated or short-term measures may be necessary for dynamic features identified by metatranscriptomics. Metagenomic and metatranscriptomic analyses of stool samples from 308 individuals over time indicate that longitudinal sampling is important for detecting dynamic functional features of the gut microbiome.
0
Citation230
0
Save
0

Rare and Common Genetic Variation Underlying Atrial Fibrillation Risk

Oliver Vad et al.Jun 26, 2024
Importance Atrial fibrillation (AF) has a substantial genetic component. The importance of polygenic risk is well established, while the contribution of rare variants to disease risk warrants characterization in large cohorts. Objective To identify rare predicted loss-of-function (pLOF) variants associated with AF and elucidate their role in risk of AF, cardiomyopathy (CM), and heart failure (HF) in combination with a polygenic risk score (PRS). Design, Setting, and Participants This was a genetic association and nested case-control study. The impact of rare pLOF variants was evaluated on the risk of incident AF. HF and CM were assessed in cause-specific Cox regressions. End of follow-up was July 1, 2022. Data were analyzed from January to October 2023. The UK Biobank enrolled 502 480 individuals aged 40 to 69 years at inclusion in the United Kingdom between March 13, 2006, and October 1, 2010. UK residents of European ancestry were included. Individuals with prior diagnosis of AF were excluded from analyses of incident AF. Exposures Rare pLOF variants and an AF PRS. Main Outcomes and Measures Risk of AF and incident HF or CM prior to and subsequent to AF diagnosis. Results A total of 403 990 individuals (218 489 [54.1%] female) with a median (IQR) age of 58 (51-63) years were included; 24 447 were diagnosed with incident AF over a median (IQR) follow-up period of 13.3 (12.4-14.0) years. Rare pLOF variants in 6 genes ( TTN , RPL3L , PKP2 , CTNNA3 , KDM5B , and C10orf71 ) were associated with AF. Of these, TTN , RPL3L , PKP2 , CTNNA3 , and KDM5B replicated in an external cohort. Combined with high PRS, rare pLOF variants conferred an odds ratio of 7.08 (95% CI, 6.03-8.28) for AF. Carriers with high PRS also had a substantial 10-year risk of AF (16% in female individuals and 24% in male individuals older than 60 years). Rare pLOF variants were associated with increased risk of CM both prior to AF (hazard ratio [HR], 3.13; 95% CI, 2.24-4.36) and subsequent to AF (HR, 2.98; 95% CI, 1.89-4.69). Conclusions and Relevance Rare and common genetic variation were associated with an increased risk of AF. The findings provide insights into the genetic underpinnings of AF and may aid in future genetic risk stratification.
Load More