MP
Michael Parfenov
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
10,021
h-index:
20
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comprehensive genomic characterization of head and neck squamous cell carcinomas

Michael Lawrence et al.Jan 27, 2015
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs. The Cancer Genome Atlas presents an integrative genome-wide analysis of genetic alterations in 279 head and neck squamous cell carcinomas (HNSCCs), which are classified by human papillomavirus (HPV) status; alterations in EGFR, FGFR, PIK3CA and cyclin-dependent kinases are shown to represent candidate targets for therapeutic intervention in most HNSCCs. Squamous cell head and neck cancer is one of the most common and deadly cancers. Despite initial responses to combinations of surgery, radiation and chemotherapy, approximately half of all tumours recur, usually within two years of initial diagnosis. Molecular markers and targeted therapies have had little impact on this disease to date. Here, The Cancer Genome Atlas team presents a detailed genome-wide overview of alterations and highlights critical genetic events of potential biological and clinical significance in head and neck squamous cell carcinomas (HNSCCs) with different human papillomavirus status. Mutational profiles reveal distinct subgroups of HNSCCs. Mutations in EGFR, FGFRs, PIK3CA and cyclin-dependent kinases represent candidate targets for therapeutic intervention in the majority of HNSCCs.
0
Citation3,442
0
Save
0

De novo mutations in histone-modifying genes in congenital heart disease

Samir Zaidi et al.May 10, 2013
Exome sequencing of patients with congenital heart disease (CHD) and their unaffected parents reveals an excess of strong-effect, protein-altering de novo mutations in genes expressed in the developing heart, many of which regulate chromatin modification in key developmental genes; collectively, these mutations are predicted to account for approximately 10% of severe CHD cases. This paper demonstrates that de novo mutations with large effect have a role in the pathogenesis of at least 10% of cases of congenital heart disease (CHD). Using exome sequence analysis in parent–offspring trios Richard Lifton and colleagues compared the frequency of de novo mutations, identified by exome sequencing, in 362 CHD parent–offspring trios and 264 control trios. Gene ontology analysis demonstrated significant enrichment of de novo protein-altering mutation of genes involved in chromatin modification, notably a marked enrichment of genes involved in the production, removal and reading of methylation of histone H3K4 and H3K27. Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births1. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent–offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation2,3,4. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left–right organizer5. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes ‘poised’ promoters and enhancers, which regulate expression of key developmental genes6. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.
0
Citation862
0
Save
0

Robust identification of deletions in exome and genome sequence data based on clustering of Mendelian errors

Kathryn Manheimer et al.Oct 26, 2017
Abstract Multiple tools have been developed to identify copy number variants (CNVs) from whole exome (WES) and whole genome sequencing (WGS) data. Current tools such as XHMM for WES and CNVnator for WGS identify CNVs based on changes in read depth. For WGS, other methods to identify CNVs include utilizing discordant read pairs and split reads and genome-wide local assembly with tools such as Lumpy and SvABA, respectively. Here, we introduce a new method to identify deletion CNVs from WES and WGS trio data based on the clustering of Mendelian errors (MEs). Using our Mendelian Error Method (MEM), we identified 127 deletions (inherited and de novo ) in 2,601 WES trios from the Pediatric Cardiac Genomics Consortium, with a validation rate of 88% by digital droplet PCR. MEM identified additional de novo deletions compared to XHMM, and also identified sample switches, DNA contamination, a significant enrichment of 15q11.2 deletions compared to controls and eight cases of uniparental disomy. We applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified deletions with 97% specificity. MEM provides a robust, computationally inexpensive method for identifying deletions, and an orthogonal approach for verifying deletions called by other tools.
0
Citation1
0
Save