ZX
Zhiwei Xiong
Author with expertise in Image Denoising Techniques and Algorithms
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(9% Open Access)
Cited by:
669
h-index:
42
/
i10-index:
137
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network

Dacheng Yin et al.Apr 3, 2020
Time-frequency (T-F) domain masking is a mainstream approach for single-channel speech enhancement. Recently, focuses have been put to phase prediction in addition to amplitude prediction. In this paper, we propose a phase-and-harmonics-aware deep neural network (DNN), named PHASEN, for this task. Unlike previous methods which directly use a complex ideal ratio mask to supervise the DNN learning, we design a two-stream network, where amplitude stream and phase stream are dedicated to amplitude and phase prediction. We discover that the two streams should communicate with each other, and this is crucial to phase prediction. In addition, we propose frequency transformation blocks to catch long-range correlations along the frequency axis. Visualization shows that the learned transformation matrix implicitly captures the harmonic correlation, which has been proven to be helpful for T-F spectrogram reconstruction. With these two innovations, PHASEN acquires the ability to handle detailed phase patterns and to utilize harmonic patterns, getting 1.76dB SDR improvement on AVSpeech + AudioSet dataset. It also achieves significant gains over Google's network on this dataset. On Voice Bank + DEMAND dataset, PHASEN outperforms previous methods by a large margin on four metrics.
0

Unsupervised Domain Adaptation for EM Image Denoising with Invertible Networks

Shiyu Deng et al.Jan 1, 2024
Electron microscopy (EM) image denoising is critical for visualization and subsequent analysis. Despite the remarkable achievements of deep learning-based non-blind denoising methods, their performance drops significantly when domain shifts exist between the training and testing data. To address this issue, unpaired blind denoising methods have been proposed. However, these methods heavily rely on image-to-image translation and neglect the inherent characteristics of EM images, limiting their overall denoising performance. In this paper, we propose the first unsupervised domain adaptive EM image denoising method, which is grounded in the observation that EM images from similar samples share common content characteristics. Specifically, we first disentangle the content representations and the noise components from noisy images and establish a shared domain-agnostic content space via domain alignment to bridge the synthetic images (source domain) and the real images (target domain). To ensure precise domain alignment, we further incorporate domain regularization by enforcing that: the pseudo-noisy images, reconstructed using both content representations and noise components, accurately capture the characteristics of the noisy images from which the noise components originate, all while maintaining semantic consistency with the noisy images from which the content representations originate. To guarantee lossless representation decomposition and image reconstruction, we introduce disentanglement-reconstruction invertible networks. Finally, the reconstructed pseudo-noisy images, paired with their corresponding clean counterparts, serve as valuable training data for the denoising network. Extensive experiments on synthetic and real EM datasets demonstrate the superiority of our method in terms of image restoration quality and downstream neuron segmentation accuracy. Our code is publicly available at https://github.com/sydeng99/DADn.
0

Non-serial Quantization-aware Deep Optics for Snapshot Hyperspectral Imaging

Lizhi Wang et al.Jan 1, 2024
Deep optics has been endeavoring to capture hyperspectral images of dynamic scenes, where the optical encoder plays an essential role in deciding the imaging performance. Our key insight is that the optical encoder of a deep optics system is expected to keep fabrication-friendliness and decoder-friendliness, to be faithfully realized in the implementation phase and fully interacted with the decoder in the design phase, respectively. In this paper, we propose the non-serial quantization-aware deep optics (NSQDO), which consists of the fabrication-friendly quantization-aware model (QAM) and the decoder-friendly non-serial manner (NSM). The QAM integrates the quantization process into the optimization and adaptively adjusts the physical height of each quantization level, reducing the deviation of the physical encoder from the numerical simulation through the awareness of and adaptation to the quantization operation of the DOE physical structure. The NSM bridges the encoder and the decoder with full interaction through bidirectional hint connections and flexibilize the connections with a gating mechanism, boosting the power of joint optimization in deep optics. The proposed NSQDO improves the fabrication-friendliness and decoder-friendliness of the encoder and develops the deep optics framework to be more practical and powerful. Extensive synthetic simulation and real hardware experiments demonstrate the superior performance of the proposed method.
Load More