RT
Romain Tisserand
Author with expertise in Gait Analysis and Fall Prevention in Elderly
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
58
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Sensorimotor Manipulations of the Balance Control Loop–Beyond Imposed External Perturbations

Brandon Rasman et al.Oct 26, 2018
J
R
P
B
Standing balance relies on the integration of multiple sensory inputs to generate the motor commands required to stand. Mechanical and sensory perturbations elicit compensatory postural responses that are interpreted as a window into the sensorimotor processing involved in balance control. Popular methods involve imposed external perturbations that disrupt the control of quiet stance. Although these approaches provide critical information on how the balance system responds to external disturbances, the control mechanisms involved in correcting for these errors may differ from those responsible for the regulation of quiet standing. Alternative approaches use manipulations of the balance control loop to alter the relationship between sensory and motor cues. Coupled with imposed perturbations, these manipulations of the balance control loop provide unique opportunities to reveal how sensory and motor signals are integrated to control the upright body. In this review, we first explore imposed perturbation approaches that have been used to investigate the neural control of standing balance. We emphasize imposed perturbations that only elicit balance responses when the disturbing stimuli are relevant to the balance task. Next, we highlight manipulations of the balance control loop that, when carefully implemented, replicate and/or alter the sensorimotor dynamics of quiet standing. We further describe how manipulations of the balance control loop can be used in combination with imposed perturbations to characterize mechanistic principles underlying the control of standing balance. We propose that recent developments in the use of robotics and sensory manipulations will continue to enable new possibilities for simulating and/or altering the sensorimotor control of standing beyond compensatory responses to imposed external perturbations.
0

Unperceived motor actions of the balance system interfere with the causal attribution of self-motion

Romain Tisserand et al.Aug 27, 2022
+3
N
B
R
The instability of human bipedalism demands that the brain accurately senses balancing self-motion and determines whether movements originate from self-generated actions or external disturbances. Here, we challenge the longstanding notion that this process relies on a single representation of the body and world to accurately perceive postural orientation and organize motor responses to control balance self-motion. Instead, we find that the conscious sense of balance can be distorted by the corrective control of upright standing. Using psychophysics, we quantified thresholds to imposed perturbations and balance responses evoking cues of self-motion that are (in)distinguishable from corrective balance actions. When standing immobile, participants clearly perceived imposed perturbations. Conversely, when freely balancing, participants often misattributed their own corrective responses as imposed motion because their balance system had detected, integrated, and responded to the perturbation in the absence of conscious perception. Importantly, this only occurred for perturbations encoded ambiguously with balance-correcting responses and that remained below the natural variability of ongoing balancing oscillations. These findings reveal that our balance system operates on its own sensorimotor principles that can interfere with causal attribution of our actions, and that our conscious sense of balance depends critically on the source and statistics of induced and self-generated motion cues.
0

Postural adjustments in anticipation of predictable perturbations allow elderly fallers to achieve a balance recovery performance equivalent to elderly non-fallers

Charlotte Mouel et al.Dec 26, 2018
R
T
R
C
Background In numerous laboratory-based perturbation experiments, differences in the balance recovery performance of elderly fallers and non-fallers are moderate or absent. This performance may be affected by the subjects adjusting their initial posture in anticipation of the perturbation.Research questions Do elderly fallers and non-fallers adjust their posture in anticipation of externally-imposed perturbations in a laboratory setting? How does this impact their balance recovery performance?Methods 21 elderly non-fallers, 18 age-matched elderly fallers and 11 young adults performed both a forward waist-pull perturbation task and a Choice Stepping Reaction Time (CSRT) task. Whole-body kinematics and ground reaction forces were recorded. For each group, we evaluated the balance recovery performance in the perturbation task, change in initial center of mass (CoM) position between the CSRT and the perturbation task, and the influence of initial CoM position on task performance.Results The balance recovery performance of elderly fallers was equivalent to elderly non-fallers (p > 0.5 Kolmogorov-Smirnov test). All subject groups anticipated forward perturbations by shifting their CoM backward compared to the CSRT task (young: 2.1% of lower limb length, elderly non-fallers: 2.7%, elderly fallers: 2.2%, Hodges-Lehmann estimator, p < 0.001 Mann-Whitney U). This backward shift increases the probability of resisting the traction without taking a step.Significance The ability to anticipate perturbations is preserved in elderly fallers and may explain their preserved balance recovery performance in laboratory-based perturbation tasks. Therefore, future fall risk prediction studies should carefully control for this postural strategy, by interleaving perturbations of different directions for example.