YL
Yanqiang Li
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(30% Open Access)
Cited by:
774
h-index:
33
/
i10-index:
91
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Recent Progress in MXene‐Based Materials: Potential High‐Performance Electrocatalysts

Anmin Liu et al.Jul 7, 2020
Abstract The family of transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) has been a thriving field since the first invention of Ti 3 C 2 T x (MXene) in 2011. MXene is a new type of nanometer 2D sheet material, which exhibits great application potentials in various fields due to its multiple advantages such as high specific surface area, good electrical conductivity, and high mechanical strength. Electrocatalysis is regarded as the core of future clean energy conversion technologies, and MXene‐based materials provide inspiration for the design and preparation of electrocatalysts with high activity, high selectivity, and long loading life time. The applications of MXene‐based materials in electrocatalysis, including hydrogen evolution reaction, nitrogen reduction reaction, oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, and methanol oxidation reaction are summarized in this review. As a crucial session regarding experiments, the current safer and more environmentally friendly preparation methods of MXene are also discussed. Focusing on the materials design and enhancement methods, the key challenges and opportunities for MXene‐based materials as a next‐generation platform in both fundamental research and practical electrocatalysis applications are presented. This account serves to promote future efforts toward the development of MXenes and related materials in the electrocatalysis applications.
0

Coarse-grained modeling of annexin A2-induced microdomain formation on a vesicle

Stuart Lindsay et al.Jun 1, 2024
Annexin A2 (A2)-induced microdomain formation is a key step in biological processes such as Ca2+-mediated exocytosis in neuroendocrine cells. In this work, a total of 15 coarse-grained molecular dynamics simulations were performed on vesicle models having a diameter of approximately 250 Å for 15 μs each using the Martini2 force field. Five simulations were performed in the presence of 10 A2, 5 in the presence of A2 but absence of PIP2, and 5 simulations in the absence of A2 but presence of PIP2. Consistent results were generated among the simulations. A2-induced PIP2 microdomain formation was observed and shown to occur in three phases: A2-vesicle association, localized A2-induced PIP2 clustering, and A2 aggregation driving PIP2 microdomain formation. The relationship between A2 aggregation and PIP2 microdomain formation was quantitatively described using a novel method which calculated the variance among protein and lipid positions via the Fréchet mean. A large reduction in PIP2 variance was observed in the presence of A2 but not in its absence. This reduction in PIP2 variance was proportional to the reduction observed in A2 variance and demonstrates that the observed PIP2 microdomain formation is dependent upon A2 aggregation. The three-phase model of A2-induced microdomain formation generated in this work will serve as a valuable guide for further experimental studies and the development of novel A2 inhibitors. No microdomain formation was observed in the absence of A2 and minimal A2-membrane interaction was observed in the absence of PIP2.
0

The conserved DNMT1 dependent methylation regions in human cells are vulnerable to environmental rotenone.

Dana Freeman et al.Oct 9, 2019
Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin- dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors and may alter the risk of neurological disease later in life by disrupting neuronal development.
0

MACMIC Reveals Dual Role of CTCF in Epigenetic Regulation of Cell Identity Genes

Guangyu Wang et al.Aug 13, 2020
ABSTRACT Numerous studies of relationship between epigenomic features have focused on their strong correlation across the genome, likely because such relationship can be easily identified by many established methods for correlation analysis. However, two features with little correlation may still colocalize at many genomic sites to implement important functions. There is no bioinformatic tool for researchers to specifically identify such feature pair. Here, we develop a method to identify feature pair in which two features have maximal colocalization but minimal correlation (MACMIC) across the genome. By MACMIC analysis of 3,385 feature pairs in 15 cell types, we reveal a dual role of CTCF in epigenetic regulation of cell identity genes. Although super-enhancers are associated with activation of target genes, only a subset of super-enhancers colocalized with CTCF regulate cell identity genes. At super-enhancers colocalized with CTCF, the CTCF is required for the active marker H3K27ac in cell type requiring the activation, and also required for the repressive marker H3K27me3 in other cell types requiring the repression. Our work demonstrates the biological utility of the MACMIC analysis and reveals a key role for CTCF in epigenetic regulation of cell identity.
0

Arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in low-dose exposed mouse embryonic fibroblast cells

Yan Zhu et al.Mar 14, 2018
Epidemiological investigations have validated the positive relationships between arsenic in drinking water and several cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanistic insight remains elusive. Herein we explore the initial epigenetic changes via acute low-dose arsenite exposures of mouse embryonic fibroblast (MEF) cells and Dot1L knockout MEF (Dot1L-/- for abbreviation) cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute low-dose arsenite exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in arsenite exposure. Significantly, arsenite exposure-reduced H3K27ac and H3K4me1 inhibit the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4), a tumor suppressor gene. Collectively, our investigations identify p300 as an internal bridging factor within cells to sense external environmental arsenite exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.