RC
Rachel Culp‐Hill
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,318
h-index:
26
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia

Daniel Pollyea et al.Oct 29, 2018
+13
C
B
D
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Leukemia stem cells (LSCs) drive the initiation and perpetuation of AML, are quantifiably associated with worse clinical outcomes, and often persist after conventional chemotherapy resulting in relapse1–5. In this report, we show that treatment of older patients with AML with the B cell lymphoma 2 (BCL-2) inhibitor venetoclax in combination with azacitidine results in deep and durable remissions and is superior to conventional treatments. We hypothesized that these promising clinical results were due to targeting LSCs. Analysis of LSCs from patients undergoing treatment with venetoclax + azacitidine showed disruption of the tricarboxylic acid (TCA) cycle manifested by decreased α-ketoglutarate and increased succinate levels, suggesting inhibition of electron transport chain complex II. In vitro modeling confirmed inhibition of complex II via reduced glutathionylation of succinate dehydrogenase. These metabolic perturbations suppress oxidative phosphorylation (OXPHOS), which efficiently and selectively targets LSCs. Our findings show for the first time that a therapeutic intervention can eradicate LSCs in patients with AML by disrupting the metabolic machinery driving energy metabolism, resulting in promising clinical activity in a patient population with historically poor outcomes. Targeting of mitochondrial metabolism in combination with BCL-2 inhibition eradicates leukemia stem cells and induces long-lasting responses in patients with acute myeloid leukemia.
0

Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells

Courtney Jones et al.Nov 1, 2018
+13
A
B
C
In this study we interrogated the metabolome of human acute myeloid leukemia (AML) stem cells to elucidate properties relevant to therapeutic intervention. We demonstrate that amino acid uptake, steady-state levels, and catabolism are all elevated in the leukemia stem cell (LSC) population. Furthermore, LSCs isolated from de novo AML patients are uniquely reliant on amino acid metabolism for oxidative phosphorylation and survival. Pharmacological inhibition of amino acid metabolism reduces oxidative phosphorylation and induces cell death. In contrast, LSCs obtained from relapsed AML patients are not reliant on amino acid metabolism due to their ability to compensate through increased fatty acid metabolism. These findings indicate that clinically relevant eradication of LSCs can be achieved with drugs that target LSC metabolic vulnerabilities.
0

p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression

Sung Moon et al.Dec 20, 2018
+18
S
C
S
There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.
0
Citation324
0
Save
0

Identification of a Small-Molecule Inhibitor That Disrupts the SIX1/EYA2 Complex, EMT, and Metastasis

Hengbo Zhou et al.Jun 15, 2020
+22
J
M
H
Abstract Metastasis is the major cause of mortality for patients with cancer, and dysregulation of developmental signaling pathways can significantly contribute to the metastatic process. The Sine oculis homeobox homolog 1 (SIX1)/eyes absent (EYA) transcriptional complex plays a critical role in the development of multiple organs and is typically downregulated after development is complete. In breast cancer, aberrant expression of SIX1 has been demonstrated to stimulate metastasis through activation of TGFβ signaling and subsequent induction of epithelial–mesenchymal transition (EMT). In addition, SIX1 can induce metastasis via non-cell autonomous means, including activation of GLI-signaling in neighboring tumor cells and activation of VEGFC–induced lymphangiogenesis. Thus, targeting SIX1 would be expected to inhibit metastasis while conferring limited side effects. However, transcription factors are notoriously difficult to target, and thus novel approaches to inhibit their action must be taken. Here we identified a novel small molecule compound, NCGC00378430 (abbreviated as 8430), that reduces the SIX1/EYA2 interaction. 8430 partially reversed transcriptional and metabolic profiles mediated by SIX1 overexpression and reversed SIX1-induced TGFβ signaling and EMT. 8430 was well tolerated when delivered to mice and significantly suppressed breast cancer–associated metastasis in vivo without significantly altering primary tumor growth. Thus, we have demonstrated for the first time that pharmacologic inhibition of the SIX1/EYA2 complex and associated phenotypes is sufficient to suppress breast cancer metastasis. Significance: These findings identify and characterize a novel inhibitor of the SIX1/EYA2 complex that reverses EMT phenotypes suppressing breast cancer metastasis.
0
Citation28
0
Save
32

Hematopoietic stem cells are a reservoir for trained immunity in autoimmune disease

Taylor Mills et al.May 21, 2022
+8
M
B
T
SUMMARY Trained immunity (TI) has been speculated to serve as a contributor to autoimmune disease (AD) pathogenesis via generation of hyper-inflammatory myeloid cells. Using a mouse model of systemic lupus erythematosus (SLE), we show that hematopoietic stem cells (HSC) constitute a transplantable, long-term reservoir for macrophages that exhibit features of TI, including increased Mycobacterium avium killing, inflammatory cytokine production, and augmented capacity to co-stimulate naive T cells. Strikingly, hematopoietic progenitor cells derived from these HSC exhibit unique molecular features characterized by reduced chromatin accessibility and transcription of metabolic genes, accompanied by reduced glycolysis and central carbon metabolism. Altogether, our data identify HSC as a functional unit of TI in chronic AD, establish increased T-cell costimulatory activity as a potentially pathogenic feature of TI in this setting, and show that macrophages inherit reduced metabolic activity from AD-exposed HSC, suggesting metabolic activation and TI can be decoupled. Our findings thus implicate HSC as a long-term reservoir for TI that could contribute to AD.
1

Targeting host glycolysis as a strategy for antimalarial development

Andrew Jezewski et al.Oct 10, 2020
+7
J
Y
A
ABSTRACT Glycolysis controls cellular energy, redox balance, and biosynthesis. Antiglycolytic therapies are under investigation for treatment of obesity, cancer, aging, autoimmunity, and microbial diseases. Interrupting glycolysis is highly valued as a therapeutic strategy, because glycolytic disruption is generally tolerated in mammals. Unfortunately, anemia is a known dose-limiting side effect of these inhibitors and presents a major caveat to development of antiglycolytic therapies. We developed specific inhibitors of enolase – a critical enzyme in glycolysis – and validated their metabolic and cellular effects on human erythrocytes. Enolase inhibition increases erythrocyte susceptibility to oxidative damage and induces rapid and premature erythrocyte senescence, rather than direct hemolysis. We apply our model of red cell toxicity to address questions regarding erythrocyte glycolytic disruption in the context of Plasmodium falciparum malaria pathogenesis. Our study provides a framework for understanding red blood cell homeostasis under normal and disease states and clarifies the importance of erythrocyte reductive capacity in malaria parasite growth.
0

Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors

Rani Powers et al.Aug 29, 2018
+14
R
K
R
Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by unknown mechanisms. We report here the results of a large metabolomics study showing that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. We found that immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, we found a positive correlation between levels of specific inflammatory cytokines and KP dysregulation. Using metabolic flux assays, we found that IFN stimulation causes IDO1 overexpression and kynurenine overproduction in cells with T21, dependent on overexpression of IFN receptors encoded on chromosome 21. Finally, KP dysregulation is conserved in a mouse model of DS carrying triplication of the IFN receptors. Altogether, these results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.