RB
Ronald Boellaard
Author with expertise in Positron Emission Tomography Imaging in Oncology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(77% Open Access)
Cited by:
10,596
h-index:
82
/
i10-index:
416
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

Ronald Boellaard et al.Dec 1, 2014
Abstract The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.
0

Microglia Activation in Recent-Onset Schizophrenia: A Quantitative (R)-[11C]PK11195 Positron Emission Tomography Study

Bart Berckel et al.Jun 5, 2008
Schizophrenia is a brain disease involving progressive loss of gray matter of unknown cause. Most likely, this loss reflects neuronal damage, which should, in turn, be accompanied by microglia activation. Microglia activation can be quantified in vivo using (R)-[(11)C]PK11195 and positron emission tomography (PET). The purpose of this study was to investigate whether microglia activation occurs in patients with recent-onset schizophrenia.Ten patients with recent-onset schizophrenia and 10 age-matched healthy control subjects were included. A fully quantitative (R)-[(11)C]PK11195 PET scan was performed on all subjects, including arterial sampling to generate a metabolite-corrected input curve.Compared with control subjects, binding potential of (R)-[(11)C]PK11195 in total gray matter was increased in patients with schizophrenia. There were no differences in other PET parameters.Activated microglia are present in schizophrenia patients within the first 5 years of disease onset. This suggests that, in this period, neuronal injury is present and that neuronal damage may be involved in the loss of gray matter associated with this disease. Microglia may form a novel target for neuroprotective therapies in schizophrenia.
0

89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer

Frederike Bensch et al.Nov 20, 2018
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) blockade is effective in a subset of patients with several tumor types, but predicting patient benefit using approved diagnostics is inexact, as some patients with PD-L1-negative tumors also show clinical benefit1,2. Moreover, all biopsy-based tests are subject to the errors and limitations of invasive tissue collection3–11. Preclinical studies of positron-emission tomography (PET) imaging with antibodies to PD-L1 suggested that this imaging method might be an approach to selecting patients12,13. Such a technique, however, requires substantial clinical development and validation. Here we present the initial results from a first-in-human study to assess the feasibility of imaging with zirconium-89-labeled atezolizumab (anti-PD-L1), including biodistribution, and secondly test its potential to predict response to PD-L1 blockade (ClinicalTrials.gov identifiers NCT02453984 and NCT02478099). We imaged 22 patients across three tumor types before the start of atezolizumab therapy. The PET signal, a function of tracer exposure and target expression, was high in lymphoid tissues and at sites of inflammation. In tumors, uptake was generally high but heterogeneous, varying within and among lesions, patients, and tumor types. Intriguingly, clinical responses in our patients were better correlated with pretreatment PET signal than with immunohistochemistry- or RNA-sequencing-based predictive biomarkers, encouraging further development of molecular PET imaging for assessment of PD-L1 status and clinical response prediction. Initial results from a first-in-human study show that PET imaging with PD-L1 antibodies outperforms immunohistochemistry- or RNA-sequencing-based biomarkers for prediction of clinical response to immunotherapy.
0
Citation541
0
Save
0

Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0

Ian Law et al.Dec 5, 2018
These joint practice guidelines, or procedure standards, were developed collaboratively by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the working group for Response Assessment in Neurooncology with PET (PET-RANO). Brain PET imaging is being increasingly used to supplement MRI in the clinical management of glioma. The aim of these standards/guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting and reporting the results of brain PET imaging in patients with glioma to achieve a high-quality imaging standard for PET using FDG and the radiolabelled amino acids MET, FET and FDOPA. This will help promote the appropriate use of PET imaging and contribute to evidence-based medicine that may improve the diagnostic impact of this technique in neurooncological practice. The present document replaces a former version of the guidelines published in 2006 (Vander Borght et al. Eur J Nucl Med Mol Imaging. 33:1374–80, 2006), and supplements a recent evidence-based recommendation by the PET-RANO working group and EANO on the clinical use of PET imaging in patients with glioma (Albert et al. Neuro Oncol. 18:1199–208, 2016). The information provided should be taken in the context of local conditions and regulations.
0
Citation409
0
Save
0

Performance Characteristics of the Digital Biograph Vision PET/CT System

Joyce Sluis et al.Jan 10, 2019
This study evaluated the performance of the Biograph Vision digital PET/CT system according to the NEMA NU 2-2012 standard (published by the National Electrical Manufacturers Association [NEMA]) to allow for a reliable, reproducible, and intersystem-comparable performance measurement. Methods: The new digital PET/CT system features silicon photomultiplier-based detectors with 3.2-mm lutetium oxyorthosilicate crystals and full coverage of the scintillator area. The PET components incorporate 8 rings of 38 detector blocks, and each block contains 4 × 2 mini blocks. Each mini block consists of a 5 × 5 lutetium oxyorthosilicate array of 3.2 × 3.2 × 20 mm crystals coupled to a silicon photomultiplier array of 16 × 16 mm, resulting in an axial field of view of 26.1 cm. In this study, PET/CT system performance was evaluated for conformation with the NEMA NU 2-2012 standard, with additional measurements described in the new NEMA NU 2-2018 standard. Spatial resolution, sensitivity, count-rate performance, accuracy of attenuation and scatter correction, image quality, coregistration accuracy, and time-of-flight performance were determined. Measurements were directly compared with results from its predecessor, the Biograph mCT Flow, using existing literature. Moreover, feasibility to comply with the European Association of Nuclear Medicine Research Ltd. (EARL) criteria was evaluated, and some illustrative patient PET images were obtained. Results: The Biograph Vision showed a transverse and axial spatial resolution of 3.6 and 3.5 mm, respectively, in full width at half maximum at a 1-cm offset from the center of the field of view (measured with a 22Na 0.25-mm point source), a NEMA sensitivity of 16.4 kcps/MBq, and a NEMA peak noise-equivalent count-rate of 306 kcps at 32 kBq/mL. Time-of-flight resolution varied from 210 to 215 as count-rate increased up to the peak noise-equivalent count-rate. The overall image contrast seen with the NEMA image quality phantom ranged from 77.2% to 89.8%. Furthermore, the system was able to comply with the current and future EARL performance criteria. Conclusion: The Biograph Vision outperforms the analog Biograph mCT Flow, and the system is able to meet European harmonizing performance standards.
0

Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability

Ralph Leijenaar et al.Sep 9, 2013
Purpose. Besides basic measurements as maximum standardized uptake value (SUV)max or SUVmean derived from 18F-FDG positron emission tomography (PET) scans, more advanced quantitative imaging features (i.e. “Radiomics” features) are increasingly investigated for treatment monitoring, outcome prediction, or as potential biomarkers. With these prospected applications of Radiomics features, it is a requisite that they provide robust and reliable measurements. The aim of our study was therefore to perform an integrated stability analysis of a large number of PET-derived features in non-small cell lung carcinoma (NSCLC), based on both a test-retest and an inter-observer setup. Methods. Eleven NSCLC patients were included in the test-retest cohort. Patients underwent repeated PET imaging within a one day interval, before any treatment was delivered. Lesions were delineated by applying a threshold of 50% of the maximum uptake value within the tumor. Twenty-three NSCLC patients were included in the inter-observer cohort. Patients underwent a diagnostic whole body PET-computed tomography (CT). Lesions were manually delineated based on fused PET-CT, using a standardized clinical delineation protocol. Delineation was performed independently by five observers, blinded to each other. Fifteen first order statistics, 39 descriptors of intensity volume histograms, eight geometric features and 44 textural features were extracted. For every feature, test-retest and inter-observer stability was assessed with the intra-class correlation coefficient (ICC) and the coefficient of variability, normalized to mean and range. Similarity between test-retest and inter-observer stability rankings of features was assessed with Spearman's rank correlation coefficient. Results. Results showed that the majority of assessed features had both a high test-retest (71%) and inter-observer (91%) stability in terms of their ICC. Overall, features more stable in repeated PET imaging were also found to be more robust against inter-observer variability. Conclusion. Results suggest that further research of quantitative imaging features is warranted with respect to more advanced applications of PET imaging as being used for treatment monitoring, outcome prediction or imaging biomarkers.
0

The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials

Ronald Boellaard et al.Aug 14, 2008
Several studies have shown the usefulness of positron emission tomography (PET) quantification using standardised uptake values (SUV) for diagnosis and staging, prognosis and response monitoring. Many factors affect SUV, such as patient preparation procedures, scan acquisition, image reconstruction and data analysis settings, and the variability in methodology across centres prohibits exchange of SUV data. Therefore, standardisation of 2-[18F] fluoro-2-deoxy-D-glucose (FDG) PET whole body procedures is required in multi-centre trials. A protocol for standardisation of quantitative FDG whole body PET studies in the Netherlands (NL) was defined. This protocol is based on standardisation of: (1) patient preparation; (2) matching of scan statistics by prescribing dosage as function of patient weight, scan time per bed position, percentage of bed overlap and image acquisition mode (2D or 3D); (3) matching of image resolution by prescribing reconstruction settings for each type of scanner; (4) matching of data analysis procedure by defining volume of interest methods and SUV calculations and; (5) finally, a multi-centre QC procedure is defined using a 20-cm diameter phantom for verification of scanner calibration and the NEMA NU 2 2001 Image Quality phantom for verification of activity concentration recoveries (i.e., verification of image resolution and reconstruction convergence). This paper describes a protocol for standardization of quantitative FDG whole body multi-centre PET studies. The protocol was successfully implemented in the Netherlands and has been approved by the Netherlands Society of Nuclear Medicine.
Load More