VD
V.S. Deshpande
Author with expertise in Manufacture and Application of Cellular Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(50% Open Access)
Cited by:
7,221
h-index:
77
/
i10-index:
246
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Resistance of Clamped Sandwich Beams to Shock Loading

NA Fleck et al.May 1, 2004
A systematic design procedure has been developed for analyzing the blast resistance of clamped sandwich beams. The structural response of the sandwich beam is split into three sequential steps: stage I is the one-dimensional fluid-structure interaction problem during the blast loading event, and results in a uniform velocity of the outer face sheet; during stage II the core crushes and the velocities of the faces and core become equalized by momentum sharing; stage III is the retardation phase over which the beam is brought to rest by plastic bending and stretching. The third-stage analytical procedure is used to obtain the dynamic response of a clamped sandwich beam to an imposed impulse. Performance charts for a wide range of sandwich core topologies are constructed for both air and water blast, with the monolithic beam taken as the reference case. These performance charts are used to determine the optimal geometry to maximize blast resistance for a given mass of sandwich beam. For the case of water blast, an order of magnitude improvement in blast resistance is achieved by employing sandwich construction, with the diamond-celled core providing the best blast performance. However, in air blast, sandwich construction gives only a moderate gain in blast resistance compared to monolithic construction.
0

Collapse of truss core sandwich beams in 3-point bending

V.S. Deshpande et al.Sep 1, 2001
Sandwich beams, comprising a truss core and either solid or triangulated face-sheets, have been investment cast in an aluminium–silicon alloy and in silicon brass. The macroscopic effective stiffness and strength of the triangulated face-sheets and tetrahedral core are estimated by idealising them as pin-jointed assemblies; tests show that this approximation is adequate. Next, the collapse responses of these sandwich beams in 3-point bending are measured. Collapse is by four competing mechanisms: face-yield, face-wrinkling, indentation and core shear, with the active collapse mode dependent upon the beam geometry and yield strain of the material. Upper bound expressions for the collapse loads are given in terms of the effective properties of the faces and core of the sandwich beam; these upper bounds are in good agreement with the measured beam response, and are used to construct collapse mechanism maps with beam geometrical parameters as the axes. The maps are useful for selecting sandwich beams of minimum weight for a given structural load index. The optimisation reveals that truss core sandwich beams are significantly lighter than the competing concept of sandwich beams with a metallic foam core.
0

Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues

Wesley Legant et al.Jun 17, 2009
Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.
Load More