MT
Max Tegmark
Author with expertise in Cosmological Parameters and Dark Energy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(85% Open Access)
Cited by:
23,976
h-index:
108
/
i10-index:
271
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cosmological parameters from SDSS and WMAP

Max Tegmark et al.May 5, 2004
+52
M
M
M
We measure cosmological parameters using the three-dimensional power spectrum $P(k)$ from over 200 000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with Wilkinson Microwave Anisotropy Probe (WMAP) and other data. Our results are consistent with a ``vanilla'' flat adiabatic cold dark matter model with a cosmological constant without tilt ${(n}_{s}=1),$ running tilt, tensor modes, or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening $1\ensuremath{\sigma}$ constraints on the Hubble parameter from $h\ensuremath{\approx}{0.74}_{\ensuremath{-}0.07}^{+0.18}$ to $h\ensuremath{\approx}{0.70}_{\ensuremath{-}0.03}^{+0.04},$ on the matter density from ${\ensuremath{\Omega}}_{m}\ensuremath{\approx}0.25\ifmmode\pm\else\textpm\fi{}0.10$ to ${\ensuremath{\Omega}}_{m}\ensuremath{\approx}0.30\ifmmode\pm\else\textpm\fi{}0.04$ $(1\ensuremath{\sigma})$ and on neutrino masses from $<11$ to $<0.6\mathrm{eV}$ (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the Two Degree Field Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from ${t}_{0}\ensuremath{\approx}{16.3}_{\ensuremath{-}1.8}^{+2.3}\mathrm{Gyr}$ to ${t}_{0}\ensuremath{\approx}{14.1}_{\ensuremath{-}0.9}^{+1.0}\mathrm{Gyr}$ by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.
0

Detection of the Baryon Acoustic Peak in the Large‐Scale Correlation Function of SDSS Luminous Red Galaxies

Daniel Eisenstein et al.Nov 7, 2005
+42
D
I
D
We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72 h-3 Gpc3 over 3816 deg2 and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100 h-1 Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density Ωmh2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find Ωm = 0.273 ± 0.025 + 0.123(1 + w0) + 0.137ΩK. Including the CMB acoustic scale, we find that the spatial curvature is ΩK = -0.010 ± 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties.
0

Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample

Will Percival et al.Nov 23, 2009
+21
A
R
W
The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)
0

The Three‐Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey

Max Tegmark et al.May 7, 2004
+50
I
A
M
We measure the large-scale real-space power spectrum P(k) by using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ a matrix-based method using pseudo-Karhunen-Loève eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h Mpc-1 < k < 0.3 h Mpc-1. We pay particular attention to modeling, quantifying, and correcting for potential systematic errors, nonlinear redshift distortions, and the artificial red-tilt caused by luminosity-dependent bias. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k < 0.1 h Mpc-1, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the Wilkinson Microwave Anisotropy Probe satellite. The power spectrum is not well-characterized by a single power law but unambiguously shows curvature. As a simple characterization of the data, our measurements are well fitted by a flat scale-invariant adiabatic cosmological model with h Ωm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L* galaxies, when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological interpretation is given in a companion paper.
0

Cosmological constraints from the SDSS luminous red galaxies

Max Tegmark et al.Dec 11, 2006
+54
M
D
M
We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loève eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.18 MoreReceived 22 August 2006DOI:https://doi.org/10.1103/PhysRevD.74.123507©2006 American Physical Society
0

New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys

Michael Blanton et al.May 20, 2005
+12
M
D
M
Here we present the New York University Value-Added Galaxy Catalog (NYU-VAGC), a catalog of local galaxies (mostly below z ≈ 0.3) based on a set of publicly released surveys matched to the Sloan Digital Sky Survey (SDSS) Data Release 2. The photometric catalog consists of 693,319 galaxies, QSOs, and stars; 343,568 of these have redshift determinations, mostly from the SDSS. Excluding areas masked by bright stars, the photometric sample covers 3514 deg2, and the spectroscopic sample covers 2627 deg2 (with about 85% completeness). Earlier, proprietary versions of this catalog have formed the basis of many SDSS investigations of the power spectrum, correlation function, and luminosity function of galaxies. Future releases will follow future public releases of the SDSS. The catalog includes matches to the Two Micron All Sky Survey Point Source Catalog and Extended Source Catalog, the IRAS Point Source Catalog Redshift Survey, the Two-Degree Field Galaxy Redshift Survey, the Third Reference Catalogue of Bright Galaxies, and the Faint Images of the Radio Sky at Twenty cm survey. We calculate and compile derived quantities from the images and spectra of the galaxies in the catalogs (for example, K-corrections and structural parameters for the galaxies). The SDSS catalog presented here is photometrically calibrated in a more consistent way than that distributed by the SDSS Data Release 2 Archive Servers and is thus more appropriate for large-scale structure statistics, reducing systematic calibration errors across the sky from ∼2% to ∼1%. We include an explicit description of the geometry of the catalog, including all imaging and targeting information as a function of sky position. Finally, we have performed eyeball quality checks on a large number of objects in the catalog in order to flag errors (such as errors in deblending). This catalog is complementary to the SDSS Archive Servers in that NYU-VAGC's calibration, geometric description, and conveniently small size are specifically designed for studying galaxy properties and large-scale structure statistics using the SDSS spectroscopic catalog.
0
Paper
Citation1,057
0
Save
0

Cosmological parameter analysis including SDSS Ly α forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy

Uroš Seljak et al.May 20, 2005
+20
P
A
U
We combine the constraints from the recent Ly$\ensuremath{\alpha}$ forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find significant improvements on all of the cosmological parameters compared to previous constraints, which highlights the importance of combining Ly$\ensuremath{\alpha}$ forest constraints with other probes. Combining WMAP and the Ly$\ensuremath{\alpha}$ forest we find for the primordial slope ${n}_{s}=0.98\ifmmode\pm\else\textpm\fi{}0.02$. We see no evidence of running, $dn/d\mathrm{ln} k=\ensuremath{-}0.003\ifmmode\pm\else\textpm\fi{}0.010$, a factor of $3$ improvement over previous constraints. We also find no evidence of tensors, $r<0.36$ ($95%$ c.l.). Inflationary models predict the absence of running and many among them satisfy these constraints, particularly negative curvature models such as those based on spontaneous symmetry breaking. A positive correlation between tensors and primordial slope disfavors chaotic inflation-type models with steep slopes: while the $V\ensuremath{\propto}{\ensuremath{\phi}}^{2}$ model is within the 2-sigma contour, $V\ensuremath{\propto}{\ensuremath{\phi}}^{4}$ is outside the 3-sigma contour. For the amplitude we find ${\ensuremath{\sigma}}_{8}=0.90\ifmmode\pm\else\textpm\fi{}0.03$ from the Ly$\ensuremath{\alpha}$ forest and WMAP alone. We find no evidence of neutrino mass: for the case of $3$ massive neutrino families with an inflationary prior, $\ensuremath{\sum}_{}^{}{m}_{\ensuremath{\nu}}<0.42$ eV and the mass of lightest neutrino is ${m}_{1}<0.13$ eV at $95%$ c.l. For the 3 massless $+1$ massive neutrino case we find ${m}_{\ensuremath{\nu}}<0.79$ eV for the massive neutrino, excluding at $95%$ c.l. all neutrino mass solutions compatible with the LSND results. We explore dark energy constraints in models with a fairly general time dependence of dark energy equation of state, finding ${\ensuremath{\Omega}}_{\ensuremath{\lambda}}=0.72\ifmmode\pm\else\textpm\fi{}0.02$, $\mathrm{w}(z=0.3)=\ensuremath{-}{0.98}_{\ensuremath{-}0.12}^{+0.10}$, the latter changing to $\mathrm{w}(z=0.3)=\ensuremath{-}{0.92}_{\ensuremath{-}0.10}^{+0.09}$ if tensors are allowed. We find no evidence for variation of the equation of state with redshift, $\mathrm{w}(z=1)=\ensuremath{-}{1.03}_{\ensuremath{-}0.28}^{+0.21}$. These results rely on the current understanding of the Ly$\ensuremath{\alpha}$ forest and other probes, which need to be explored further both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among different data sets used here.
0

How Small Were the First Cosmological Objects?

Max Tegmark et al.Jan 1, 1997
+3
M
J
M
The minimum mass that a virialized gas cloud must have in order to be able to cool in a Hubble time is computed, using a detailed treatment of the chemistry of molecular hydrogen. With a simple model for halo profiles, we reduce the problem to that of numerically integrating a system of chemical equations. The results agree well with numerically expensive three-dimensional simulations, and our approach has the advantage of being able to explore large regions of parameter space rapidly. The minimum baryonic mass Mb is found to be strongly redshift dependent, dropping from 106 M☉ at z ~ 15 to 5 × 103 M☉ at z ~ 100 as molecular cooling becomes effective. For z ≫ 100, Mb rises again, as cosmic microwave background photons inhibit H2 formation through the H- channel. Finally, for z ≫ 200, the H+2 channel for H2 formation becomes effective, driving Mb down toward Mb ~ 103 M☉. With a standard cold dark matter power spectrum with σ8 = 0.7, this implies that a fraction 10-3 of all baryons may have formed luminous objects by z = 30, which could be sufficient to reheat the universe.
0

The Luminosity and Color Dependence of the Galaxy Correlation Function

Idit Zehavi et al.Sep 1, 2005
+22
D
Z
I
We study the luminosity and color dependence of the galaxy two-point correlation function in the Sloan Digital Sky Survey, starting from a sample of ~200,000 galaxies over 2500 deg2. We concentrate our analysis on volume-limited subsamples of specified luminosity ranges, for which we measure the projected correlation function wp(rp), which is directly related to the real-space correlation function ξ(r). The amplitude of wp(rp) rises continuously with luminosity from Mr ≈ -17.5 to Mr ≈ -22.5, with the most rapid increase occurring above the characteristic luminosity L* (Mr ≈ -20.5). Over the scales 0.1 h-1 Mpc < rp < 10 h-1 Mpc, the measurements for samples with Mr > -22 can be approximated, imperfectly, by power-law three-dimensional correlation functions ξ(r) = (r/r0)-γ with γ ≈ 1.8 and r0(L*) ≈ 5.0 h-1 Mpc. The brightest subsample, -23 < Mr < -22, has a significantly steeper ξ(r). When we divide samples by color, redder galaxies exhibit a higher amplitude and steeper correlation function at all luminosities. The correlation amplitude of blue galaxies increases continuously with luminosity, but the luminosity dependence for red galaxies is less regular, with bright red galaxies exhibiting the strongest clustering at large scales and faint red galaxies exhibiting the strongest clustering at small scales. We interpret these results using halo occupation distribution (HOD) models assuming concordance cosmological parameters. For most samples, an HOD model with two adjustable parameters fits the wp(rp) data better than a power law, explaining inflections at rp ~ 1-3 h-1 Mpc as the transition between the one-halo and two-halo regimes of ξ(r). The implied minimum mass for a halo hosting a central galaxy more luminous than L grows steadily, with Mmin ∝ L at low luminosities and a steeper dependence above L*. The mass at which a halo has, on average, one satellite galaxy brighter than L is M1 ≈ 23Mmin(L), at all luminosities. These results imply a conditional luminosity function (at fixed halo mass) in which central galaxies lie far above a Schechter function extrapolation of the satellite population. The HOD model fits nicely explain the color dependence of wp(rp) and the cross correlation between red and blue galaxies. For galaxies with Mr < -21, halos slightly above Mmin have blue central galaxies, while more massive halos have red central galaxies and predominantly red satellite populations. The fraction of blue central galaxies increases steadily with decreasing luminosity and host halo mass. The strong clustering of faint red galaxies follows from the fact that nearly all of them are satellite systems in high-mass halos. The HOD fitting results are in good qualitative agreement with the predictions of numerical and semianalytic models of galaxy formation.
0
Paper
Citation703
0
Save
0

Nanophotonic particle simulation and inverse design using artificial neural networks

John Peurifoy et al.Jun 1, 2018
+6
J
Y
J
New deep learning techniques may hold the key to solving intractable photonics problems.
Load More