IF
Inés Fernández-Maestre
Author with expertise in Hematopoietic Stem Cell Biology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
4
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Jak2V617F Reversible Activation Shows an Essential Requirement for Jak2V617F in Myeloproliferative Neoplasms

Andrew Dunbar et al.May 18, 2022
+26
A
R
A
ABSTRACT Janus kinases (JAKs) mediate cytokine signaling, cell growth and hematopoietic differentiation. 1 Gain-of-function mutations activating JAK2 signaling are seen in the majority of myeloproliferative neoplasm (MPN) patients, most commonly due to the JAK2 V617F driver allele. 2 While clinically-approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic JAK inhibitor therapy in most patients. 3, 4 This has been postulated to be due to incomplete dependence on constitutive JAK/STAT signaling, alternative signaling pathways, and/or the presence of cooperating disease alleles; 5 however we hypothesize this is due to the inability of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2 V617F from its endogenous locus using a Dre- rox /Cre- lox dual orthogonal recombinase system. Deletion of oncogenic Jak2 V617F abrogates the MPN disease phenotype, induces mutant-specific cell loss including in hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition. Furthermore, reversal of Jak2 V617F in MPN cells with antecedent loss of Tet2 6, 7 abrogates the MPN phenotype and inhibits mutant stem cell persistence suggesting cooperating epigenetic-modifying alleles do not alter dependence on mutant JAK/STAT signaling. Our results suggest that mutant-specific inhibition of JAK2 V617F represents the best therapeutic approach for JAK2 V617F -mutant MPN and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo .
20
Citation2
0
Save
7

Transcription factor induction of vascular blood stem cell niches in vivo

Elliott Hagedorn et al.Nov 4, 2021
+30
R
J
E
Abstract The hematopoietic niche is a supportive microenvironment comprised of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses, we define a conserved gene expression signature and cis -regulatory landscape unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code involving members of the Ets, Sox and Nuclear Hormone Receptor families that is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance and division of HSPCs in vivo . These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo , and for effective therapies to modulate the endogenous niche.
7
Citation1
0
Save
91

Modeling clonal evolution and oncogenic dependency in vivo in the context of hematopoietic transformation

Robert Bowman et al.May 18, 2022
+23
Y
S
R
Summary Cancer evolution is a multifaceted process involving the acquisition of somatic mutations and progressive epigenetic dysregulation of cellular fate. Both cell-intrinsic mechanisms and environmental interactions provide selective pressures capable of promoting clonal evolution and expansion, with single-cell and bulk DNA sequencing offering increased resolution into this process 1-4 . Advances in genome editing, single-cell biology and expressed lentiviral barcoding have enabled new insights into how transcriptional/epigenetic states change with clonal evolution 5,6 . Despite the extensive catalog of genomic alterations revealed by resequencing studies 7,8 , there remain limited means to functionally model and perturb this evolutionary process in experimental systems 9 . Here we integrated multi-recombinase (Cre, Flp, and Dre) tools for modeling reversible, sequential mutagenesis from premalignant clonal hematopoiesis to acute myeloid leukemia. We demonstrate that somatic acquisition of Flt3 activating mutations elicits distinct phases of acute and chronic activation resulting in differential cooperativity with Npm1 and Dnmt3a disease alleles. We next developed a generalizable allelic framework allowing for the reversible expression of oncogenic mutations at their endogenous loci. We found that reversal of mutant Flt3 resulted in rapid leukemic regression with distinct alterations in cellular compartments depending upon co-occurring mutations. These studies provide a path to model sequential mutagenesis and deterministically investigate mechanisms of transformation and oncogenic dependency in the context of clonal evolution.
91
Citation1
0
Save
0

PURE-seq identifiesEgr1as a Potential Master Regulator in Murine Aging by Sequencing Long-Term Hematopoietic Stem Cells

Sixuan Pan et al.Aug 14, 2024
+5
I
K
S
Abstract Single-cell transcriptomics is valuable for uncovering individual cell properties, particularly in highly heterogeneous systems. However, this technique often results in the analysis of many well- characterized cells, increasing costs and diluting rare cell populations. To address this, we developed PURE-seq (PIP-seq for Rare-cell Enrichment and Sequencing) for scalable sequencing of rare cells. PURE-seq allows direct cell loading from FACS into PIP-seq reactions, minimizing handling and reducing cell loss. PURE-seq reliably captures rare cells, with 60 minutes of sorting capturing tens of cells at a rarity of 1 in 1,000,000. Using PURE-seq, we investigated murine long- term hematopoietic stem cells and their transcriptomes in the context of hematopoietic aging, identifying Egr1 as a potential master regulator of hematopoiesis in the aging context. PURE-seq offers an accessible and reliable method for isolating and sequencing cells that are currently too rare to capture successfully with existing methods.
0

Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes

Emile Wogram et al.Aug 1, 2024
+19
W
F
E
Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD
0

CRISPR Dependency Screens in Primary Hematopoietic Stem Cells Identify KDM3B as a Genotype Specific Vulnerability in IDH2- and TET2-Mutant Cells

Michael Waarts et al.May 31, 2024
+22
M
S
M
Abstract Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs. Significance: Given the broad prevalence, comorbidities, and risk of malignant transformation associated with CH, there is an unmet need to identify therapeutic targets. We develop an ex vivo platform to perform CRISPR/Cas9 screens in primary HSPCs. We identify KDM3B and downstream signaling components as genotype-specific dependencies in CH and myeloid malignancies.
0

Mesenchymal Stromal Cell Senescence Induced by Dnmt3a-Mutant Hematopoietic Cells is a Targetable Mechanism Driving Clonal Hematopoiesis and Initiation of Hematologic Malignancy

Jayna Mistry et al.Mar 30, 2024
+4
P
K
J
Abstract Clonal hematopoiesis (CH) can predispose to blood cancers due to enhanced fitness of mutant hematopoietic stem and progenitor cells (HSPCs), but the mechanisms driving this progression are not understood. We hypothesized that malignant progression is related to microenvironment-remodelling properties of CH-mutant HSPCs. Single-cell transcriptomic profiling of the bone marrow microenvironment in Dnmt3a R878H/+ mice revealed signatures of cellular senescence in mesenchymal stromal cells (MSCs). Dnmt3a R878H/+ HSPCs caused MSCs to upregulate the senescence markers SA-β-gal, BCL-2, BCL-xL, Cdkn1a (p21) and Cdkn2a (p16), ex vivo and in vivo . This effect was cell contact-independent and can be replicated by IL-6 or TNFα, which are produced by Dnmt3a R878H/+ HSPCs. Depletion of senescent MSCs in vivo reduced the fitness of Dnmt3a R878H/+ hematopoietic cells and the progression of CH to myeloid neoplasms using a sequentially inducible Dnmt3a ; Npm1 -mutant model. Thus, Dnmt3a -mutant HSPCs reprogram their microenvironment via senescence induction, creating a self-reinforcing niche favoring fitness and malignant progression. Statement of Significance Mesenchymal stromal cell senescence induced by Dnmt3a -mutant hematopoietic stem and progenitor cells drives clonal hematopoiesis and initiation of hematologic malignancy.