JK
Ji Kim
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
78
/
i10-index:
592
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spectrin is a mechanoresponsive protein shaping the architecture of intercellular invasion

Rui Duan et al.Jun 23, 2017
Spectrin is a membrane skeletal protein best known for its structural role in maintaining cell shape and protecting cells from mechanical damage. Here, we report that spectrin dynamically accumulates and dissolves at the fusogenic synapse, where an attacking fusion partner mechanically invades its receiving partner with actin-propelled protrusions to promote cell-cell fusion. Using genetics, cell biology, biophysics and mathematical modeling, we demonstrate that unlike myosin II that responds to dilation deformation, spectrin exhibits a mechanosensitive accumulation in response to shear deformation, which is highly elevated at the fusogenic synapse. The accumulated spectrin forms an uneven network, which functions as a sieve to constrict the invasive fingerlike protrusions, thus putting the fusogenic synapse under high mechanical tension to promote cell membrane fusion. Taken together, our study has revealed a previously unrecognized function of spectrin as a dynamic mechanoresponsive protein that shapes the architecture of intercellular invasion. These findings have general implications for understanding spectrin function in other dynamic cellular processes beyond cell-cell fusion.
0

The mechanisms of dynamin-actin interaction

Ruihui Zhang et al.Mar 25, 2019
Cell-cell fusion is an indispensable process in the conception, development and physiology of multicellular organisms. Here we demonstrate a direct and noncanonical role for dynamin, best known as a fission GTPase in endocytosis, in cell-cell fusion. Our genetic and cell biological analyses show that dynamin colocalizes within the F-actin-enriched podosome-like structures at the fusogenic synapse, which is required for generating invasive membrane protrusions and myoblast fusion in vivo, in an endocytosis-independent manner. Biochemical, negative stain EM and cryo-electron tomography (cryo-ET) analyses revealed that dynamin forms helices that directly bundles actin filaments by capturing multiple actin filaments at their outer rim via interactions with the proline-rich domain of dynamin. GTP hydrolysis by dynamin triggers disassembly of the dynamin helix, exposes the sides of the actin filaments, promotes dynamic Arp2/3-mediated branched actin polymerization, and generates a mechanically stiff actin network. Thus, dynamin functions as a unique actin-bundling protein that enhances mechanical force generation by the F-actin network in a GTPase-dependent manner. Our findings have universal implications for understanding dynamin-actin interactions in various cellular processes beyond cell-cell fusion.