SF
Shufang Fan
Author with expertise in Influenza Virus Research and Epidemiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,101
h-index:
24
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Characterization of H7N9 influenza A viruses isolated from humans

Tokuko Watanabe et al.Jul 9, 2013
Here, biological attributes of two early human isolates of the newly emerged H7N9 influenza viruses are characterized: the potential of these viruses to infect and/or transmit within various animal models is discussed, as is their relative sensitivity to neuraminidase inhibitors and experimental polymerase inhibitors compared to an H1N1 pandemic strain. By 20 July 2013, there had been 134 laboratory-confirmed human cases of infection with avian influenza A H7N9 virus infection, including 43 deaths. Yoshihiro Kawaoka and colleagues characterize the biology of two recent isolates of the virus. They provide a wealth of data from infections in mice, pigs, macaques and ferrets. H7N9 virus is shown to be less sensitive to neuraminidase inhibitors than pandemic H1N1 virus, but equally susceptible to an experimental polymerase inhibitor. Terrence Tumpey and colleagues determine the capacity of two clinical H7N9 isolates to cause disease and transmit between mammals. They show that the virus can replicate in human airway cells and in the respiratory tract of ferrets to a higher level than can seasonal H3N2 virus, and show higher lethality in mice than genetically related H7N9 and H9N2 viruses. In transmission studies, the H7N9 virus showed limited transmission in ferrets by respiratory droplets. Ron Fouchier and colleagues investigate the transmissibility of H7N9 virus between ferrets. They show that airborne transmission can occur, but inefficiently. They also show that on passage in ferrets, virus variants that have higher avian receptor binding, higher pH of fusion and lower thermostability are selected, and they suggest that these characteristics may result in reduced transmissibility. Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission1, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
0

Properties and Dissemination of H5N1 Viruses Isolated during an Influenza Outbreak in Migratory Waterfowl in Western China

Hualan Chen et al.May 26, 2006
ABSTRACT H5N1 influenza A viruses are widely distributed among poultry in Asia, but until recently, only a limited number of wild birds were affected. During late April through June 2005, an outbreak of H5N1 virus infection occurred among wild birds at Qinghai Lake in China. Here, we describe the features of this outbreak. First identified in bar-headed geese, the disease soon spread to other avian species populating the lake. Sequence analysis of 15 viruses representing six avian species and collected at different times during the outbreak revealed four different H5N1 genotypes. Most of the isolates possessed lysine at position 627 in the PB2 protein, a residue known to be associated with virulence in mice and adaptation to humans. However, neither of the two index viruses possessed this residue. All of the viruses tested were pathogenic in mice, with the exception of one index virus. We also tested the replication of two viruses isolated during the Qinghai Lake outbreak and one unrelated duck H5N1 virus in rhesus macaques. The Qinghai Lake viruses did not replicate efficiently in these animals, producing no evidence of disease other than transient fever, while the duck virus replicated in multiple organs and caused symptoms of respiratory illness. Importantly, H5N1 viruses isolated in Mongolia, Russia, Inner Mongolia, and the Liaoning Province of China after August 2005 were genetically closely related to one of the genotypes isolated during the Qinghai outbreak, suggesting the dominant nature of this genotype and underscoring the need for worldwide intensive surveillance to minimize its devastating consequences.
0
Citation360
0
Save
0

Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses

Vineet Menachery et al.May 21, 2014
The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications.This work combines systems biology and experimental validation to identify and confirm strategies used by viruses to control the immune response. Using a novel screening approach, specific comparison between highly pathogenic influenza viruses and coronaviruses revealed similarities and differences in strategies to control the interferon and innate immune response. These findings were subsequently confirmed and explored, revealing both a common pathway of antagonism via type I interferon (IFN) delay as well as a novel avenue for control by altered histone modification. Together, the data highlight how comparative systems biology analysis can be combined with experimental validation to derive novel insights into viral pathogenesis.
2

Hypergraph models of biological networks to identify genes critical to pathogenic viral response

Song Feng et al.May 29, 2021
Abstract Background Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses.
2
Citation47
1
Save
5

Host network-based discovery of critical regulators of innate immunity, virus growth, and pathogenesis in influenza virus infection

Amie Eisfeld et al.Aug 30, 2022
ABSTRACT Innate immunity is protective against viruses, but also can facilitate pathological infection responses. Despite intensive research, our understanding of the mechanisms that regulate innate immunity in virus infection remains incomplete. Systems biology-based data-driven modeling approaches hold substantial promise toward discovery of crucial innate immune signaling regulators, yet model-derived predictions are almost completely unexplored. Here, we carried out systematic experimental validation of candidate regulators predicted by a transcriptional association network model of influenza virus-infected cells. We identified dozens of novel innate immune signaling regulators with potent effects on the replication of influenza and other viruses, and importantly, we established the biological relevance of a validated regulator in vivo . Collectively, these findings aid in clarifying mechanisms of influenza virus pathogenicity and might lead to innovative approaches for treating influenza virus disease. Similar data-driven modeling strategies may be applicable for the study of other pathogen systems or immunological disorders.