SV
Scott VandenBerg
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
University of California, San Francisco, University of California, San Diego, UCSF Helen Diller Family Comprehensive Cancer Center
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
2,210
h-index:
73
/
i10-index:
151
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

Mark Rubin et al.Nov 20, 2020
+753
N
M
M

Summary

 DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.
2
Citation852
0
Save
1

Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity

Kristen Turner et al.Nov 17, 2022
+18
D
V
K
Human cells have twenty-three pairs of chromosomes. In cancer, however, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ecDNA), although the frequency and functional importance of ecDNA are not understood. We performed whole-genome sequencing, structural modelling and cytogenetic analyses of 17 different cancer types, including analysis of the structure and function of chromosomes during metaphase of 2,572 dividing cells, and developed a software package called ECdetect to conduct unbiased, integrated ecDNA detection and analysis. Here we show that ecDNA was found in nearly half of human cancers; its frequency varied by tumour type, but it was almost never found in normal cells. Driver oncogenes were amplified most commonly in ecDNA, thereby increasing transcript level. Mathematical modelling predicted that ecDNA amplification would increase oncogene copy number and intratumoural heterogeneity more effectively than chromosomal amplification. We validated these predictions by quantitative analyses of cancer samples. The results presented here suggest that ecDNA contributes to accelerated evolution in cancer.
4

A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers

Anil Korkut et al.Nov 20, 2020
+740
A
R
A
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories.
4
Paper
Citation524
0
Save
3

Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

Joshua Campbell et al.Dec 8, 2020
+751
R
C
J
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.
3
Paper
Citation275
0
Save
2

A reversible SRC-relayed COX2-inflammatory program drives therapeutic resistance in BRAFV600Ecolorectal tumors

Ana Ruiz-Sáenz et al.Oct 24, 2023
+22
C
C
A
ABSTRACT BRAF V600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF/MEK/EGFR co-targeting, we used a high throughput kinase activity mapping platform. We found that SRC kinases are systematically activated in BRAF V600E CRC following targeted inhibition of BRAF ± EGFR, and that coordinated targeting of SRC with BRAF ± EGFR increases efficacy in vitro and in vivo . SRC drives resistance to BRAF ± anti-EGFR therapy independently of ERK signaling by inducing transcriptional reprogramming via beta-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E 2 -loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF+EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft (PDX) models. COX2 inhibition represents a novel drug-repurposing strategy to overcome therapeutic resistance in BRAF V600E CRC.