FL
Fu Lu
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
936
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome sequence of the progenitor of the wheat D genome Aegilops tauschii

Ming‐Cheng Luo et al.Nov 1, 2017
A combination of advanced sequencing and mapping techniques is used to produce a reference genome of Aegilops tauschii, progenitor of the wheat D genome, providing a valuable resource for comparative genetic studies. Sequencing the genomes of crops plants provides useful resources for crop improvement and breeding. Jan Dvořák, Katrien Devos, Steven Salzberg and colleagues report a reference genome for Aegilops tauschii, the diploid progenitor of the D genome of hexaploid wheat. They use a combination of ordered-clone genome sequencing, whole-genome shotgun sequencing and BioNano optical genome mapping to assemble this large and highly repetitive genome. This provides a useful resource for comparative genomics studies of wheat. Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat2,3,4. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence5. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.
0
Citation559
0
Save
0

Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of hexaploid wheat and diploidAegilops tauschii

Fu-Hao Lu et al.Mar 7, 2019
Abstract Polyploidy has been centrally important in driving the evolution of plants, and leads to alterations in gene expression that are thought to underlie the emergence of new traits. Despite the common occurrence of these global patterns of altered gene expression in polyploids, the mechanisms involved are not well understood. Using a precise framework of highly conserved syntenic genes on hexaploid wheat chromosome 3DL and its progenitor 3L chromosome arm of diploid Aegilops tauschii , we show that 70% of these genes exhibited proportionally reduced gene expression, in which expression in the hexaploid context of the 3DL genes was approximately 40% of the levels observed in diploid Ae. tauschii. Many genes showing elevated expression during later stages of grain development in wheat compared to Ae. tauschii. Gene sequence and methylation differences accounted for only a few cases of differences in gene expression. In contrast, large scale patterns of reduced chromatin accessibility of genes in the hexaploid chromosome arm compared to its diploid progenitor were correlated with observed overall reduction in gene expression and differential gene expression. Therefore, that an overall reduction in accessible chromatin underlies the major differences in gene expression that results from polyploidization.
0
Citation4
0
Save
0

Independent assessment and improvement of wheat genome assemblies using Fosill jumping libraries

Fu-Hao Lu et al.Nov 14, 2017
The accurate sequencing and assembly of very large, often polyploid, genomes remain a challenging task, limiting long range sequence information and phased sequence variation for applications such as plant breeding. The 15 Gb hexaploid bread wheat genome has been particularly challenging to sequence, and several contending approaches recently generated accurate long range assemblies. Understanding errors in these assemblies is important for optimising future sequencing and assembly approaches and for comparative genomics. Here we use a Fosill 38 Kb jumping library to assess medium and longer range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent BAC based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid long read (PacBio) and short read (Illumina) assembly were carried out. We revealed a variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a three-fold increase in N50 values. Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies are significantly more accurate by all measures compared to BAC-based chromosome scale assemblies. Although current whole genome assemblies are reasonably accurate and useful, additional steps will be needed for the rapid, cost effective and complete sequencing and assembly of wheat genomes.
0

Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis

Hui Dong et al.Nov 30, 2016
The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin- activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana. The peptidase is activated by two RING E3 ligases, BB and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PRT1 of the N-end rule pathway. DA1 peptidase activity also cleaves the de-ubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TCP15 and TCP22, which promote cell proliferation proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.
0

Variation in the expression of a transmembrane protein influences cell growth in Arabidopsis thaliana petals by altering auxin availability.

Charlotte Miller et al.Jan 6, 2020
Background: The same species of plant can exhibit highly diverse sizes and shapes of organs that are genetically determined. Defining genetic variation underlying this morphological diversity is an important objective in evolutionary studies and it also helps identify the functions of genes influencing plant growth and development. Extensive screens of mutagenised Arabidopsis populations have identified multiple genes and mechanisms affecting organ size and shape, but relatively few studies have exploited the rich diversity of natural populations to identify genes involved in growth control. Results: We screened a relatively well characterised collection of Arabidopsis thaliana ecotypes for variation in petal size. Association analyses identified sequence and gene expression variation on chromosome 4 that made a substantial contribution to differences in petal area. Variation in expression of At4g16850 (named as KSK), encoding a hypothetical protein, had a substantial role on variation in organ size by influencing cell size. Over-expression of KSK led to larger petals with larger cells and promoted the formation of stamenoid features. The expression of auxin-responsive genes known to limit cell growth was reduced in response to KSK over-expression. ANT expression was also reduced in KSK over-expression lines, consistent with altered floral identities. Auxin availability was reduced in KSK over-expressing cells, consistent with changes in auxin-responsive gene expression. KSK may therefore influence auxin availability during petal development. Conclusions: Understanding how genetic variation influences plant growth is important for both evolutionary and mechanistic studies. We used natural populations of Arabidopsis thaliana to identify sequence variation in a promoter region of Arabidopsis ecotypes that mediated differences in the expression of a previously uncharacterised membrane protein. This variation contributed to altered auxin availability and cell size during petal growth.