VC
Vittoria Colizza
Author with expertise in Modeling the Dynamics of COVID-19 Pandemic
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(68% Open Access)
Cited by:
9,132
h-index:
60
/
i10-index:
140
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiscale mobility networks and the spatial spreading of infectious diseases

Duygu Balcan et al.Dec 15, 2009
+3
B
V
D
Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. In order to study the interplay between small-scale commuting flows and long-range airline traffic in shaping the spatio-temporal pattern of a global epidemic we i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms; ii) integrate in a worldwide structured metapopulation epidemic model a time-scale separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short range mobility increases however the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multi-scale framework.
0
Paper
Citation1,288
0
Save
0

Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study

Marius Gilbert et al.Feb 20, 2020
+10
F
G
M
The novel coronavirus disease 2019 (COVID-19) epidemic has spread from China to 25 countries. Local cycles of transmission have already occurred in 12 countries after case importation. In Africa, Egypt has so far confirmed one case. The management and control of COVID-19 importations heavily rely on a country's health capacity. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of COVID-19.We used data on the volume of air travel departing from airports in the infected provinces in China and directed to Africa to estimate the risk of importation per country. We determined the country's capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulations Monitoring and Evaluation Framework; and vulnerability, using the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing most to their risk.Countries with the highest importation risk (ie, Egypt, Algeria, and South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (ie, Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and Kenya) have variable capacity and high vulnerability. We identified three clusters of countries that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and the city of Beijing, respectively.Many countries in Africa are stepping up their preparedness to detect and cope with COVID-19 importations. Resources, intensified surveillance, and capacity building should be urgently prioritised in countries with moderate risk that might be ill-prepared to detect imported cases and to limit onward transmission.EU Framework Programme for Research and Innovation Horizon 2020, Agence Nationale de la Recherche.
0
Paper
Citation1,178
0
Save
0

The role of the airline transportation network in the prediction and predictability of global epidemics

Vittoria Colizza et al.Feb 3, 2006
A
M
A
V
The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.
0

Detecting rich-club ordering in complex networks

Vittoria Colizza et al.Jan 15, 2006
A
M
A
V
Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue for the understanding of their fabric and dynamical properties [1-5]. The ``rich-club'' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences [4-8]. Here we provide the analytical expression and the correct null models which allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains.
0

Reaction–diffusion processes and metapopulation models in heterogeneous networks

Vittoria Colizza et al.Mar 4, 2007
A
R
V
Dynamical reaction–diffusion processes and metapopulation models are standard modelling approaches for a wide array of phenomena in which local quantities—such as density, potentials and particles—diffuse and interact according to the physical laws. Here, we study the behaviour of the basic reaction–diffusion process (given by the reaction steps B→A and B+A→2B) defined on networks with heterogeneous topology and no limit on the nodes’ occupation number. We investigate the effect of network topology on the basic properties of the system’s phase diagram and find that the network heterogeneity sustains the reaction activity even in the limit of a vanishing density of particles, eventually suppressing the critical point in density-driven phase transitions, whereas phase transition and critical points independent of the particle density are not altered by topological fluctuations. This work lays out a theoretical and computational microscopic framework for the study of a wide range of realistic metapopulation and agent-based models that include the complex features of real-world networks.
0
Citation774
0
Save
0

Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions

Vittoria Colizza et al.Jan 20, 2007
+2
M
A
V
The highly pathogenic H5N1 avian influenza virus, which is now widespread in Southeast Asia and which diffused recently in some areas of the Balkans region and Western Europe, has raised a public alert toward the potential occurrence of a new severe influenza pandemic. Here we study the worldwide spread of a pandemic and its possible containment at a global level taking into account all available information on air travel.We studied a metapopulation stochastic epidemic model on a global scale that considers airline travel flow data among urban areas. We provided a temporal and spatial evolution of the pandemic with a sensitivity analysis of different levels of infectiousness of the virus and initial outbreak conditions (both geographical and seasonal). For each spreading scenario we provided the timeline and the geographical impact of the pandemic in 3,100 urban areas, located in 220 different countries. We compared the baseline cases with different containment strategies, including travel restrictions and the therapeutic use of antiviral (AV) drugs. We investigated the effect of the use of AV drugs in the event that therapeutic protocols can be carried out with maximal coverage for the populations in all countries. In view of the wide diversity of AV stockpiles in different regions of the world, we also studied scenarios in which only a limited number of countries are prepared (i.e., have considerable AV supplies). In particular, we compared different plans in which, on the one hand, only prepared and wealthy countries benefit from large AV resources, with, on the other hand, cooperative containment scenarios in which countries with large AV stockpiles make a small portion of their supplies available worldwide.We show that the inclusion of air transportation is crucial in the assessment of the occurrence probability of global outbreaks. The large-scale therapeutic usage of AV drugs in all hit countries would be able to mitigate a pandemic effect with a reproductive rate as high as 1.9 during the first year; with AV supply use sufficient to treat approximately 2% to 6% of the population, in conjunction with efficient case detection and timely drug distribution. For highly contagious viruses (i.e., a reproductive rate as high as 2.3), even the unrealistic use of supplies corresponding to the treatment of approximately 20% of the population leaves 30%-50% of the population infected. In the case of limited AV supplies and pandemics with a reproductive rate as high as 1.9, we demonstrate that the more cooperative the strategy, the more effective are the containment results in all regions of the world, including those countries that made part of their resources available for global use.
0

Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model

Duygu Balcan et al.Jul 25, 2010
+3
H
B
D
▶ Integration of empirical mobility networks in a computational epidemic model. ▶ Discrete stochastic epidemic model at the worldwide scale. ▶ Computational platform and algorithms that can be extended to other diseases. Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of historical epidemics, the assessment of the role of human mobility in shaping global epidemics, and the analysis of mitigation and containment scenarios.
0

Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic

Paolo Bajardi et al.Jan 31, 2011
+3
J
C
P
After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on epidemic models that integrate the wide range of features characterizing human mobility and the many options available to public health organizations for responding to a pandemic. Here we present a comprehensive computational and theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing the invasion dynamics of the epidemics at the metapopulation level.
0

Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations

Vittoria Colizza et al.Dec 5, 2007
A
V
The spatial structure of populations is a key element in the understanding of the large-scale spreading of epidemics. Motivated by the recent empirical evidence on the heterogeneous properties of transportation and commuting patterns among urban areas, we present a thorough analysis of the behavior of infectious diseases in metapopulation models characterized by heterogeneous connectivity and mobility patterns. We derive the basic reaction-diffusion equations describing the metapopulation system at the mechanistic level and derive an early stage dynamics approximation for the subpopulation invasion dynamics. The analytical description uses a homogeneous assumption on degree block variables that allows us to take into account arbitrary degree distribution of the metapopulation network. We show that along with the usual single population epidemic threshold the metapopulation network exhibits a global threshold for the subpopulation invasion. We find an explicit analytic expression for the invasion threshold that determines the minimum number of individuals traveling among subpopulations in order to have the infection of a macroscopic number of subpopulations. The invasion threshold is a function of factors such as the basic reproductive number, the infectious period and the mobility process and it is found to decrease for increasing network heterogeneity. We provide extensive mechanistic numerical Monte Carlo simulations that recover the analytical finding in a wide range of metapopulation network connectivity patterns. The results can be useful in the understanding of recent data driven computational approaches to disease spreading in large transportation networks and the effect of containment measures such as travel restrictions.
0

On the Use of Human Mobility Proxies for Modeling Epidemics

Michele Tizzoni et al.Jul 10, 2014
+6
A
P
M
Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control, but may be hindered by data incompleteness or unavailability. Here we explore the opportunity of using proxies for individual mobility to describe commuting flows and predict the diffusion of an influenza-like-illness epidemic. We consider three European countries and the corresponding commuting networks at different resolution scales, obtained from (i) official census surveys, (ii) proxy mobility data extracted from mobile phone call records, and (iii) the radiation model calibrated with census data. Metapopulation models defined on these countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data capture the empirical commuting patterns well, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from mobile phones and census sources are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, once the mobile phone commuting network is considered in the epidemic model, however preserving to a high degree the order of infection of newly affected locations. Proxies' calibration affects the arrival times' agreement across different models, and the observed topological and traffic discrepancies among mobility sources alter the resulting epidemic invasion patterns. Results also suggest that proxies perform differently in approximating commuting patterns for disease spread at different resolution scales, with the radiation model showing higher accuracy than mobile phone data when the seed is central in the network, the opposite being observed for peripheral locations. Proxies should therefore be chosen in light of the desired accuracy for the epidemic situation under study.
Load More