PC
P. Cox
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(100% Open Access)
Cited by:
9,876
h-index:
80
/
i10-index:
215
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TheHerschel-SPIRE instrument and its in-flight performance

Matthew Griffin et al.Jul 1, 2010
+94
H
S
M
The Spectral and Photometric Imaging Receiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 microns, and an imaging Fourier Transform Spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 microns (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
0
Paper
Citation1,966
0
Save
0

High molecular gas fractions in normal massive star-forming galaxies in the young Universe

L. Tacconi et al.Feb 1, 2010
+19
R
R
L
Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts  of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.
0

A study of the gas-star formation relation over cosmic time★

R. Genzel et al.Sep 6, 2010
+19
J
L
R
We use the first systematic data sets of CO molecular line emission in z∼ 1–3 normal star-forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshifts, and in different galactic environments. Although the current high-z samples are still small and biased towards the luminous and massive tail of the actively star-forming ‘main-sequence’, a fairly clear picture is emerging. Independent of whether galaxy-integrated quantities or surface densities are considered, low- and high-z SFG populations appear to follow similar molecular gas–star formation relations with slopes 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time-scale in these SFGs grows from 0.5 Gyr at z∼ 2 to 1.5 Gyr at z∼ 0. The average corresponds to a fairly low star formation efficiency of 2 per cent per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultraluminous, gas-rich major mergers at both low and high z produce on average four to 10 times more far-infrared luminosity per unit gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas mass or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. For a given mass, the more compact merger systems produce stars more rapidly because their gas clouds are more compressed with shorter dynamical times, so that they churn more quickly through the available gas reservoir than the typical normal disc galaxies. When the dependence on galactic dynamical time-scale is explicitly included, disc galaxies and mergers appear to follow similar gas-to-star formation relations. The mergers may be forming stars at slightly higher efficiencies than the discs.
0

PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS INz∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

L. Tacconi et al.Apr 16, 2013
+21
D
J
L
We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in normal star forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z~1.2 and 2.2, with log(M*(M_solar))>10.4 and log(SFR(M_solar/yr))>1.5. Including a correction for the incomplete coverage of the M*-SFR plane, we infer average gas fractions of ~0.33 at z~1.2 and ~0.47 at z~2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z~1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular gas - star formation relation for the z=1-3 SFGs is near-linear, with a ~0.7 Gyrs gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z~0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M*, gas fractions correlate strongly with the specific star formation rate. The variation of specific star formation rate between z~0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.
0

From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from theHerschelGould Belt Survey

Philippe André et al.Jul 1, 2010
+54
S
A
P
We summarize the first results from the Gould Belt Survey, obtained toward the Aquila rift and Polaris Flare regions during the science demonstration phase of Herschel. Our 70–500 μm images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~350 and 500 prestellar cores and ~45–60 Class 0 protostars can be identified in the Aquila field, while ~300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.
0

PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions*

L. Tacconi et al.Feb 1, 2018
+32
A
R
L
This paper provides an update of our previous scaling relations (Genzel et al.2015) between galaxy integrated molecular gas masses, stellar masses and star formation rates, in the framework of the star formation main-sequence (MS), with the main goal to test for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ~1mm dust photometry, in a large sample of 1444 star forming galaxies (SFGs) between z=0 and 4. The sample covers the stellar mass range log(M*/M_solar)=9.0-11.8, and star formation rates relative to that on the MS, delta_MS=SFR/SFR(MS), from 10^{-1.3} to 10^{2.2}. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t_depl, defined as the ratio of molecular gas mass to star formation rate, scales as (1+z)^{-0.6}x(delta_MS)^{-0.44}, and is only weakly dependent on stellar mass. The ratio of molecular-to-stellar mass mu_gas depends on (1+z)^{2.5}x (delta_MS)^{0.52}x(M*)^{-0.36}, which tracks the evolution of the specific star formation rate. The redshift dependence of mu_gas requires a curvature term, as may the mass-dependences of t_depl and mu_gas. We find no or only weak correlations of t_depl and mu_gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high-z.
0

A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34

Dominik Riechers et al.Apr 1, 2013
+61
D
C
D
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
0

COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS

R. Genzel et al.Feb 5, 2015
+33
D
L
R
We combine molecular gas masses inferred from CO emission in 500 star-forming galaxies (SFGs) between z = 0 and 3, from the IRAM-COLDGASS, PHIBSS1/2, and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion timescale (tdepl) and gas to stellar mass ratio (Mmol gas/M*) of SFGs near the star formation "main-sequence" with redshift, specific star-formation rate (sSFR), and stellar mass (M*). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO → H2 mass conversion factor varies little within ±0.6 dex of the main sequence (sSFR(ms, z, M*)), and less than 0.3 dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that tdepl scales as (1 + z)−0.3 × (sSFR/sSFR(ms, z, M*))−0.5, with little dependence on M*. The resulting steep redshift dependence of Mmol gas/M* ≈ (1 + z)3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR–M* relation. Throughout the probed redshift range a combination of an increasing gas fraction and a decreasing depletion timescale causes a larger sSFR at constant M*. As a result, galaxy integrated samples of the Mmol gas–SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmol gas with an accuracy of ±0.1 dex in relative terms, and ±0.2 dex including systematic uncertainties.
0

High‐Resolution Millimeter Imaging of Submillimeter Galaxies

L. Tacconi et al.Mar 13, 2006
+8
S
R
L
We present ~06 resolution IRAM PdBI interferometry of eight submillimeter galaxies at z ~ 2-3.4, where we detect continuum at 1 mm and/or CO lines at 3 and 1 mm. The CO 3-2/4-3 line profiles in five of the sources are double-peaked, indicative of orbital motion either in a single rotating disk or of a merger of two galaxies. The millimeter line and continuum emission is compact; we marginally resolve the sources or obtain tight upper limits to their intrinsic sizes in all cases. The median FWHM diameter for these sources and the previously resolved sources, SMM J023952-0136 and SMM J140104+0252, is ≤05 (4 kpc). The compactness of the sources does not support a scenario in which the far-IR/submillimeter emission comes from a cold (T < 30 K), very extended dust distribution. These measurements clearly show that the submillimeter galaxies (SMGs) we have observed resemble scaled-up and more gas-rich versions of the local universe, ultraluminous galaxy population. Their central densities and potential well depths are much greater than those in other z ~ 2-3 galaxy samples studied so far. They are comparable to those of elliptical galaxies or massive bulges. The SMG properties fulfill the criteria of "maximal" starbursts, in which most of the available initial gas reservoir of 1010-1011 M☉ is converted to stars on a timescale ~3-10tdyn ~ a few times 108 yr.
0

An interferometric CO survey of luminous submillimetre galaxies

T. Greve et al.May 1, 2005
+9
I
F
T
In this paper we present results from an IRAM Plateau de Bure millimetre-wave Interferometer (PdBI) survey for CO emission towards radio-detected submillimetre galaxies (SMGs) with known optical and near-infrared spectroscopic redshifts. Five sources in the redshift range z~1-3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarise the properties of all 12 CO-detected SMGs, as well as 6 sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the SMG population as a whole. The median CO line luminosity of the SMGs is = (3.8 +- 2.0) x 10^10 K km/s pc^2. Using a CO-to-H_2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass = (3.0 +- 1.6) x 10^10 Msun within a ~2kpc radius, about four times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high-redshift radio galaxies and QSOs. The median CO fwhm linewidth is broad, = 780 +- 320 km/s, and the SMGs often have double peaked line profiles, indicative of either a merger or a disk. From their median gas reservoirs (~3 x 10^10 Msun) and star-formation rates (>700 Msun/yr) we estimate a lower limit on the typical gas-depletion time scale of >40Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs, and suggests that negative feedback processes may play an important role in prolonging the gas consumption time scale. We find a statistically-significant correlation between the far-infrared and CO luminosities of the SMGs which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. [ABRIDGED]
0
Citation466
0
Save
Load More