AP
Anthony Phillips
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(67% Open Access)
Cited by:
8,420
h-index:
95
/
i10-index:
254
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

Shitij Kapur et al.Aug 7, 2012
Patients with mental disorders show many biological abnormalities which distinguish them from normal volunteers; however, few of these have led to tests with clinical utility. Several reasons contribute to this delay: lack of a biological ‘gold standard’ definition of psychiatric illnesses; a profusion of statistically significant, but minimally differentiating, biological findings; ‘approximate replications’ of these findings in a way that neither confirms nor refutes them; and a focus on comparing prototypical patients to healthy controls which generates differentiations with limited clinical applicability. Overcoming these hurdles will require a new approach. Rather than seek biomedical tests that can ‘diagnose’ DSM-defined disorders, the field should focus on identifying biologically homogenous subtypes that cut across phenotypic diagnosis—thereby sidestepping the issue of a gold standard. To ensure clinical relevance and applicability, the field needs to focus on clinically meaningful differences between relevant clinical populations, rather than hypothesis-rejection versus normal controls. Validating these new biomarker-defined subtypes will require longitudinal studies with standardized measures which can be shared and compared across studies—thereby overcoming the problem of significance chasing and approximate replications. Such biological tests, and the subtypes they define, will provide a natural basis for a ‘stratified psychiatry’ that will improve clinical outcomes across conventional diagnostic boundaries.
0
Citation932
0
Save
0

Selective Roles for Hippocampal, Prefrontal Cortical, and Ventral Striatal Circuits in Radial-Arm Maze Tasks With or Without a Delay

Stan Floresco et al.Mar 1, 1997
The hippocampus, the prefrontal cortex, and the ventral striatum form interconnected neural circuits that may underlie aspects of spatial cognition and memory. In the present series of experiments, we investigated functional interactions between these areas in rats during the performance of delayed and nondelayed spatially cued radial-arm maze tasks. The two-phase delayed task consisted of a training phase that provided rats with information about where food would be located on the maze 30 min later during a test phase. The single-phase nondelayed task was identical to the test phase of the delayed task, but in the absence of a training phase rats lacked previous knowledge of the location of food on the maze. Transient inactivation of the ventral CA1/subiculum (vSub) by a bilateral injection of lidocaine disrupted performance on both tasks. Lidocaine injections into the vSub on one side of the brain and the prefrontal cortex on the other transiently disconnected these two brain regions and significantly impaired foraging during the delayed task but not the nondelayed task. Transient disconnections between the vSub and the nucleus accumbens produced the opposite effect, disrupting foraging during the nondelayed task but not during the delayed task. These data suggest that serial transmission of information between the vSub and the prefrontal cortex is required when trial-unique, short-term memory is used to guide prospective search behavior. In contrast, exploratory goal-directed locomotion in a novel situation not requiring previously acquired information about the location of food is dependent on serial transmission between the hippocampus and the nucleus accumbens. These results indicate that different aspects of spatially mediated behavior are subserved by separate, distributed limbic-cortical-striatal networks.
0

D1Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat

Jeremy Seamans et al.Feb 15, 1998
Dopamine (DA) within the prefrontal cortex (PFC) plays an important role in modulating the short-term retention of information during working memory tasks. In contrast, little is known about the role of DA in modulating other executive aspects of working memory such as the use of short-term memory to guide action. The present study examined the effects of D1 and D2 receptor blockade in the PFC on foraging by rats on a radial arm maze under two task conditions: (1) a delayed task in which spatial information acquired during a training phase was used 30 min later to guide prospective responses, and (2) a nondelayed task that was identical to the test phase of the delayed task but lacked a training phase, thereby depriving rats of previous information about the location of food on the maze. In experiment 1, microinjections of the D1 antagonist SCH-23390 (0.05, 0.5, or 5 microg/µl), but not the D2 antagonist sulpiride (0.05, 0.5, or 5 microg/microl), into the prelimbic region of the PFC before the test phase disrupted performance of the delayed task without affecting response latencies. In contrast, neither drug affected performance of the nondelayed task. In the present study, we also investigated the role of D1 receptors in modulating activity in hippocampal-PFC circuits during delayed responding. Unilateral injections of SCH-23390 into the PFC in the hemisphere contralateral to a microinjection of lidocaine into the hippocampus severely disrupted performance of the delayed task. Thus, the ability to use previously acquired spatial information to guide responding 30 min later on a radial arm maze requires D1 receptor activation in the PFC and D1 receptor modulation of hippocampal inputs to the PFC. These data suggest that D1 receptors in the PFC are involved in working memory processes other than just the short-term active retention of information and also provide direct evidence for DA modulation of limbic-PFC circuits during behavior.
0

Dopaminergic substrates of amphetamine-induced place preference conditioning

Christina Spyraki et al.Dec 1, 1982
The conditioned place preference paradigm was used to study the reinforcing properties ofD-amphetamine. Rats were injected (i.p.) withD-amphetamine sulphate (0.5, 1.0 or 5.0 mg/kg) and 10 min later confined for 30 min to one side of a shuttle ☐ in which each of the two compartments had distinctive features. On alternate (control) days they received saline injections and were confined for 30 min to the opposite side. At all dosesD-amphetamine produced place preference for the distinctive compartment that previously had been associated with the drug. Pretreatment with haloperidol (0.15 or 1.0 mg/kg) antagonized the place preference produced by amphetamine (1.5 mg/kg). By itself, haloperidol (0.15 or 1.0 mg/kg) did not produce place aversion. In separate experiments theD-amphetamine-induced place preference was examined in rats that had received 6-hydroxydopamine (6-OHDA) lesions of the nucleus accumbens. Animals with the greatest depletion of dopamine did not show preference for the compartment associated withD-amphetamine. Furthermore, the time spent on the amphetamine-reinforced side correlated significantly with the levels of dopamine remaining in the nucleus accumbens but not with the dopamine content in the striatum. Depletion of peripheral catecholamines by systemic injections of 6-OHDA did not affectD-amphetamine-induced place preference conditioning. Other groups of animals that received the dopamine receptor agonist, apomorphine, also developed a conditioned preference for the compartment that had been associated with the drug treatment. These findings support the view that the reinforcing effects ofD-amphetamine are mediated by central dopamine-containing neurons, and in particular those of the mesolimbic system.
Load More