Abstract Biomarkers for more precise patient care are needed in metastatic prostate cancer. We have reported a phase II trial (TOPARP-A) of the PARP inhibitor olaparib in metastatic prostate cancer, demonstrating antitumor activity associating with homologous recombination DNA repair defects. We now report targeted and whole-exome sequencing of serial circulating cell-free DNA (cfDNA) samples collected during this trial. Decreases in cfDNA concentration independently associated with outcome in multivariable analyses (HR for overall survival at week 8: 0.19; 95% CI, 0.06–0.56; P = 0.003). All tumor tissue somatic DNA repair mutations were detectable in cfDNA; allele frequency of somatic mutations decreased selectively in responding patients (χ2 P < 0.001). At disease progression, following response to olaparib, multiple subclonal aberrations reverting germline and somatic DNA repair mutations (BRCA2, PALB2) back in frame emerged as mechanisms of resistance. These data support the role of liquid biopsies as a predictive, prognostic, response, and resistance biomarker in metastatic prostate cancer. Significance: We report prospectively planned, serial, cfDNA analyses from patients with metastatic prostate cancer treated on an investigator-initiated phase II trial of olaparib. These analyses provide predictive, prognostic, response, and resistance data with “second hit” mutations first detectable at disease progression, suggesting clonal evolution from treatment-selective pressure and platinum resistance. Cancer Discov; 7(9); 1006–17. ©2017 AACR. See related commentary by Domchek, p. 937. See related article by Kondrashova et al., p. 984. See related article by Quigley et al., p. 999. This article is highlighted in the In This Issue feature, p. 920