MH
Mohamad Hamieh
Author with expertise in Chimeric Antigen Receptor T Cell Therapy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
4,237
h-index:
17
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection

Justin Eyquem et al.Feb 21, 2017
+6
T
J
J
Introducing chimeric antigen receptors into the endogenous T-cell receptor locus reduces tonic signalling, averts accelerated T-cell differentiation and delays T-cell exhaustion, leading to enhanced function and anti-tumour efficacy compared to random integrations. Using T cells transduced with synthetic chimeric antigen receptors (CARs) is a promising strategy for treating certain types of cancer. Here Michel Sadelain and colleagues provide evidence in a mouse tumour model that knocking the CAR into the endogenous T-cell receptor α constant locus reduces tonic signalling, avoids accelerated T-cell differentiation, and delays T-cell exhaustion. This results in enhanced function and anti-tumour efficacy compared with random integrations. Chimeric antigen receptors (CARs) are synthetic receptors that redirect and reprogram T cells to mediate tumour rejection1. The most successful CARs used to date are those targeting CD19 (ref. 2), which offer the prospect of complete remission in patients with chemorefractory or relapsed B-cell malignancies3. CARs are typically transduced into the T cells of a patient using γ-retroviral4 vectors or other randomly integrating vectors5, which may result in clonal expansion, oncogenic transformation, variegated transgene expression and transcriptional silencing6,7,8. Recent advances in genome editing enable efficient sequence-specific interventions in human cells9,10, including targeted gene delivery to the CCR5 and AAVS1 loci11,12. Here we show that directing a CD19-specific CAR to the T-cell receptor α constant (TRAC) locus not only results in uniform CAR expression in human peripheral blood T cells, but also enhances T-cell potency, with edited cells vastly outperforming conventionally generated CAR T cells in a mouse model of acute lymphoblastic leukaemia. We further demonstrate that targeting the CAR to the TRAC locus averts tonic CAR signalling and establishes effective internalization and re-expression of the CAR following single or repeated exposure to antigen, delaying effector T-cell differentiation and exhaustion. These findings uncover facets of CAR immunobiology and underscore the potential of CRISPR/Cas9 genome editing to advance immunotherapies.
0
Citation1,455
0
Save
0

CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade

Theodoros Giavridis et al.May 24, 2018
+3
J
S
T
Chimeric antigen receptor (CAR) therapy targeting CD19 is an effective treatment for refractory B cell malignancies, especially acute lymphoblastic leukemia (ALL) 1 . Although a majority of patients will achieve a complete response following a single infusion of CD19-targeted CAR-modified T cells (CD19 CAR T cells)2–4, the broad applicability of this treatment is hampered by severe cytokine release syndrome (CRS), which is characterized by fever, hypotension and respiratory insufficiency associated with elevated serum cytokines, including interleukin-6 (IL-6)2,5. CRS usually occurs within days of T cell infusion at the peak of CAR T cell expansion. In ALL, it is most frequent and more severe in patients with high tumor burden2–4. CRS may respond to IL-6 receptor blockade but can require further treatment with high dose corticosteroids to curb potentially lethal severity2–9. Improved therapeutic and preventive treatments require a better understanding of CRS physiopathology, which has so far remained elusive. Here we report a murine model of CRS that develops within 2–3 d of CAR T cell infusion and that is potentially lethal and responsive to IL-6 receptor blockade. We show that its severity is mediated not by CAR T cell–derived cytokines, but by IL-6, IL-1 and nitric oxide (NO) produced by recipient macrophages, which enables new therapeutic interventions. Blocking IL-1 and iNOS prevents CAR T cell–induced cytokine release syndrome.
0
Citation973
0
Save
0

Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability

Bernhard Mlecnik et al.Mar 1, 2016
+29
H
G
B
Microsatellite instability in colorectal cancer predicts favorable outcomes. However, the mechanistic relationship between microsatellite instability, tumor-infiltrating immune cells, Immunoscore, and their impact on patient survival remains to be elucidated. We found significant differences in mutational patterns, chromosomal instability, and gene expression that correlated with patient microsatellite instability status. A prominent immune gene expression was observed in microsatellite-instable (MSI) tumors, as well as in a subgroup of microsatellite-stable (MSS) tumors. MSI tumors had increased frameshift mutations, showed genetic evidence of immunoediting, had higher densities of Th1, effector-memory T cells, in situ proliferating T cells, and inhibitory PD1-PDL1 cells, had high Immunoscores, and were infiltrated with mutation-specific cytotoxic T cells. Multivariate analysis revealed that Immunoscore was superior to microsatellite instability in predicting patients’ disease-specific recurrence and survival. These findings indicate that assessment of the immune status via Immunoscore provides a potent indicator of tumor recurrence beyond microsatellite-instability staging that could be an important guide for immunotherapy strategies.
0
Citation861
0
Save
0

CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape

Mohamad Hamieh et al.Mar 27, 2019
+14
I
X
M
Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence1. Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies1–3, and the results of early clinical trials suggest activity in multiple myeloma4. Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low1,2,4–9. Unlike the mechanisms that result in complete and permanent antigen loss6,8,9, those that lead to escape of antigen-low tumours remain unclear. Here, using mouse models of leukaemia, we show that CARs provoke reversible antigen loss through trogocytosis, an active process in which the target antigen is transferred to T cells, thereby decreasing target density on tumour cells and abating T cell activity by promoting fratricide T cell killing and T cell exhaustion. These mechanisms affect both CD28- and 4-1BB-based CARs, albeit differentially, depending on antigen density. These dynamic features can be offset by cooperative killing and combinatorial targeting to augment tumour responses to immunotherapy. Chimeric antigen receptors (CARs) promote antigen loss in tumour cells by trogocytosis, which results in T cell fratricide killing and exhaustion but can be counteracted by cooperative killing and combinatorial targeting.
0

Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency

Judith Feucht et al.Dec 11, 2018
+7
J
J
J
Chimeric antigen receptors (CARs) are synthetic receptors that target and reprogram T cells to acquire augmented antitumor properties1. CD19-specific CARs that comprise CD28 and CD3ζ signaling motifs2 have induced remarkable responses in patients with refractory leukemia3–5 and lymphoma6 and were recently approved by the US Food and Drug Administration7. These CARs program highly performing effector functions that mediate potent tumor elimination4,8 despite the limited persistence they confer on T cells3–6,8. Extending their functional persistence without compromising their potency should improve current CAR therapies. Strong T cell activation drives exhaustion9,10, which may be accentuated by the redundancy of CD28 and CD3ζ signaling11,12 as well as the spatiotemporal constraints imparted by the structure of second-generation CARs2. Thus, we hypothesized that calibrating the activation potential of CD28-based CARs would differentially reprogram T cell function and differentiation. Here, we show that CARs encoding a single immunoreceptor tyrosine-based activation motif direct T cells to different fates by balancing effector and memory programs, thereby yielding CAR designs with enhanced therapeutic profiles. A novel chimeric antigen receptor (CAR) T cell design improves therapeutic efficacy by balancing effector and memory profiles.
109

HLA-independent T cell receptors for targeting tumors with low antigen density

Jorge Mansilla-Soto et al.Jan 13, 2022
+22
S
J
J
Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR. We demonstrate that these HLA-independent T cell receptors (HIT receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based CARs, the most sensitive design to date, can provide. We demonstrate that the functional persistence of HIT T cells can be augmented by constitutive coexpression of CD80 and 4-1BBL. Finally, we validate the increased antigen sensitivity afforded by HIT receptors in xenograft mouse models of B cell leukemia and acute myeloid leukemia, targeting CD19 and CD70, respectively. Overall, HIT receptors are well suited for targeting cell surface antigens of low abundance.
109
Citation78
3
Save
2

Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells

Sjoukje Stegen et al.Aug 8, 2022
+16
R
P
S
The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αβ+ CAR T cells that perform similarly to CD8αβ+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αβ+ T cells for a broad range of immunotherapies.
2
Citation33
1
Save