AE
Alaa Elwany
Author with expertise in Additive Manufacturing of Metallic Components
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
1,333
h-index:
37
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel

Aref Yadollahi et al.Mar 11, 2016
The effects of building orientation and post-fabrication heat treatment (solution annealing plus peak-aging) on fully-reversed strain-controlled fatigue behavior of 17-4 precipitation hardening (PH) stainless steel (SS) fabricated via Selective Laser Melting (SLM) is investigated. For this particular alloy, post-SLM heat treatment was found to be necessary in order to improve its tensile strength and fatigue behavior in low cycle fatigue (LCF), where the effects of microstructural impurities are less pronounced. However, the selected heat treatment was found to have detrimental influence on the SLM 17-4 PH SS high cycle fatigue (HCF) performance. The heat treatment resulted in precipitation hardening, allowing the SLM parts to become more sensitive to impurities in HCF, where the crack initiation stage dominates the total fatigue lifetime. Building orientation played a significant role on fatigue behavior in both LCF and HCF, owing to the relative orientation of deposited layers with respect to applied load. Un-melted regions (i.e. inter-layer cavities/voids), resulting from insufficient fusion or low laser penetration depth, were found to be the most detrimental type of defects on fatigue strength of SLM 17-4 PH SS due to their relatively large size and irregular shape. These specific regions that formed during fabrication of vertically-orientated samples were more detrimental than those of horizontally-built ones as they provided more stress concentration under loading, leading to lower fatigue strength. Although the process parameters were optimized based on maximizing density, the results of this study imply that this criterion is not sufficient for improving fatigue behavior, as the split-shaped un-melted regions, containing a large area with small volume, cannot be taken into account through conventional density measurements.
4

Effect of composition and phase diagram features on printability and microstructure in laser powder bed fusion: Development and comparison of processing maps across alloy systems

Raiyan Seede et al.Nov 1, 2021
Additive manufacturing (AM) has gained considerable academic and industrial interest due to its ability to produce parts with complex geometries with the potential for local microstructural control. However, due to the large number of material and process variables associated with AM, optimization of alloying compositions and process parameters to achieve desired properties is an arduous task. There is a fundamental gap in understanding how changes in process variables and alloy composition and thermodynamics affect additively manufactured parts. The present systematic study sheds light on the effects of alloying composition and corresponding phase diagram features on the printability and solidification microstructures of four binary nickel-based alloys, namely, Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at% Zr. These compositions are selected to represent binary isomorphous, weak solute partitioning, strong solute partitioning, and eutectic alloying conditions, respectively. Single track and bulk experiments are conducted to quantify the effects of varying material thermodynamic properties such as solidification temperature ranges, alloy melting temperatures, and other solidification conditions on resultant microstructures across the laser powder bed fusion (L-PBF) parameter space. A simple framework for developing processing maps detailing porosity formation and microsegregation across the laser power – scan speed parameter space is established and validated for each of these alloys to determine how material properties affect printability and microstructure in L-PBF. This knowledge will be vital in optimizing alloy chemistry and process parameters to design alloys specifically for additive manufacturing, as well as to provide a path toward local microstructure control.
4
Citation13
1
Save
0

Active interlocking metasurfaces enabled by shape memory alloys

Abdelrahman Elsayed et al.Jul 7, 2024
Interlocking metasurfaces (ILMs) are a newly developed joining technology that relies on arrays of interlocking features that transmit force and constrain motion between adjoining bodies in one or more directions. This study explores harnessing the shape memory effect (SME) in Nickel-Titanium shape memory alloys (NiTi SMAs) in structures fabricated using additive manufacturing (AM) to advance the development of active ILMs by creating unit cells that open or close at specific temperatures. The study encompasses designing and fabricating two distinct interlocking array configurations using near-equiatomic NiTi powder and the laser powder bed fusion (L-PBF) AM technique, following a previously developed AM process optimization framework to manufacture defect-free parts. To guide the design process, finite element analysis (FEA) was employed to predict strain values during engage-disengage cycles. The martensitic transformation characteristics of the ILMs were characterized. Thermomechanical testing revealed that the ILMs demonstrate high locking force once engaged, coupled with complete shape recovery and good cyclic stability. Digital image correlation (DIC) was also employed to validate the FEA predictions during the engage-disengage cycles. The results indicate that NiTi SMA-based ILMs can be designed and fabricated into complex shapes using L-PBF. By leveraging the SME, the functionality of an ILM can be improved upon. The combination of computational modeling, additive manufacturing, and thermomechanical and physical property characterization provides a framework for designing future ILMs out of active materials.