YL
Yong-Kuk Lee
Author with expertise in Wearable Nanogenerator Technology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
72
h-index:
17
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes

Hyo‐Ryoung Lim et al.Aug 1, 2022
Monitoring electrolytes is critical for newborns and babies in the intensive care unit. However, the gold standard methods use a blood draw, which is painful and only offers discrete measures. Although salivary-based detection offers promise as an alternative, existing devices are ineffective for real-time, continuous monitoring of electrolytes due to their rigidity, bulky form factors, and lack of salivary accumulation. Here, we introduce a smart, wireless, bioelectronic pacifier for salivary electrolyte monitoring of neonates, which can detect real-time continuous sodium and potassium levels without a blood draw. The miniature system facilitates the seamless integration of the ultralight and low-profile device with a commercial pacifier without additional fixtures or structural modifications. The portable device includes ion-selective sensors, flexible circuits, and microfluidic channels, allowing simplified measurement protocols in non-invasive electrolyte monitoring. The flexible microfluidic channel enables continuous and efficient saliva collection from a mouth. By modifying the surface properties of the channels and the structure of the capillary reservoir, we achieve reliable pumping of the viscous medium for quick calibration and measurement. Embedded sensors in the system show good stability and sensitivity: 52 and 57 mV/decade for the sodium and potassium sensor, respectively. In vivo study with neonates in the intensive care unit captures the device's feasibility and performance in the natural saliva-based detection of the critical electrolytes without induced stimulation.
3

Wireless, Flexible, Ion-Selective Electrode System for Selective and Repeatable Detection of Sodium

Hyo‐Ryoung Lim et al.Jun 10, 2020
Wireless, flexible, ion-selective electrodes (ISEs) are of great interest in the development of wearable health monitors and clinical systems. Existing film-based electrochemical sensors, however, still have practical limitations due to poor electrical contact and material–interfacial leakage. Here, we introduce a wireless, flexible film-based system with a highly selective, stable, and reliable sodium sensor. A flexible and hydrophobic composite with carbon black and soft elastomer serves as an ion-to-electron transducer offering cost efficiency, design simplicity, and long-term stability. The sensor package demonstrates repeatable analysis of selective sodium detection in saliva with good sensitivity (56.1 mV/decade), stability (0.53 mV/h), and selectivity coefficient of sodium against potassium (−3.0). The film ISEs have an additional membrane coating that provides reinforced stability for the sensor upon mechanical bending. Collectively, the comprehensive study of materials, surface chemistry, and sensor design in this work shows the potential of the wireless flexible sensor system for low-profile wearable applications.
0

Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection

Hyo‐Ryoung Lim et al.Feb 26, 2021
Saliva can be used for health monitoring with non-invasive wearable systems. Such devices, including electrochemical sensors, may provide a safe, fast, and cost-efficient way of detecting target ions. Although salivary ions are known to reflect those in blood, no available clinical device can detect essential ions directly from saliva. Here, we introduce an all-solid-state, flexible film sensor that allows highly accurate detection of sodium levels in saliva, comparable to those in blood. The wireless film sensor system can successfully measure sodium ions from a small volume of infants’ saliva (<400 µL), demonstrating its potential as a continuous health monitor. This study includes the structural characterization and error analysis of a carbon/elastomer-based ion-selective electrode and a reference electrode to confirm the signal reliability. The sensor, composed of a pair of the electrodes, shows good sensitivity (58.9 mV/decade) and selectivity (log K = −2.68 for potassium), along with a broad detection range of 5 × 10−5 ≈ 1 M with a low detection limit of 4.27 × 10−5 M. The simultaneous comparison between the film sensor and a commercial electrochemical sensor demonstrates the accuracy of the flexible sensor and a positive correlation in saliva-to-blood sodium levels. Collectively, the presented study shows the potential of the wireless ion-selective sensor system for a non-invasive, early disease diagnosis with saliva.
0
Citation21
0
Save
0

Printed Nanomaterials for All-in-One Integrated Flexible Wearables and Bioelectronics

Young-Jin Kwon et al.Nov 25, 2024
Recent advancements in printing technologies allow for fabricating various wearable sensors, circuits, and integrated electronics. However, most printing tools have limited ranges of handling ink viscosity, a short working distance, and a limited feature size for developing sophisticated electronics. Here, this paper introduces an all-in-one integrated wearable electronic system via multilayer, multinanomaterial printing. Versatile, high-resolution aerosol-jet printing could successfully print Cu nanoparticles, Ag nanoparticles, PEDOT:PSS, and polyimide (PI) to manufacture nanomembrane composite structures, including skin-contact electrodes and wireless circuits. The printed polymer, PEDOT:PSS deposited on the Cu, ensures biocompatibility when making direct skin contact while enhancing electrical conductivity for electrodes. A self-assembled monolayer facilitates better adhesion of Cu nanoparticles on the PI. Also, using intensive pulsed light, a photonic sintering method minimizes Cu-oxidation while avoiding thermal damage. The combined experimental and computational study shows the mechanical flexibility and reliability of the printed integrated device. With human subjects, the flexible wireless bioelectronic system demonstrates superior performance in detecting high-fidelity physiological signals on the skin, including electromyograms, electrooculograms, electrocardiograms, and motions, proving its potential applications in portable human healthcare and persistent human-machine interfaces.