HD
Hong‐Ning Dai
Author with expertise in Blockchain and Internet of Things Integration
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(35% Open Access)
Cited by:
7,817
h-index:
45
/
i10-index:
118
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Wide and Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids

Zibin Zheng et al.Dec 21, 2017
Electricity theft is harmful to power grids. Integrating information flows with energy flows, smart grids can help to solve the problem of electricity theft owning to the availability of massive data generated from smart grids. The data analysis on the data of smart grids is helpful in detecting electricity theft because of the abnormal electricity consumption pattern of energy thieves. However, the existing methods have poor detection accuracy of electricity theft since most of them were conducted on one-dimensional (1-D) electricity consumption data and failed to capture the periodicity of electricity consumption. In this paper, we originally propose a novel electricity-theft detection method based on wide and deep convolutional neural networks (CNN) model to address the above concerns. In particular, wide and deep CNN model consists of two components: the wide component and the deep CNN component. The deep CNN component can accurately identify the nonperiodicity of electricity theft and the periodicity of normal electricity usage based on 2-D electricity consumption data. Meanwhile, the wide component can capture the global features of 1-D electricity consumption data. As a result, wide and deep CNN model can achieve the excellent performance in electricity-theft detection. Extensive experiments based on realistic dataset show that wide and deep CNN model outperforms other existing methods.
0

Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

Yulei Wu et al.Sep 22, 2020
Critical infrastructure systems are vital to underpin the functioning of a society and economy. Due to the ever-increasing number of Internet-connected Internet-of-Things (IoT)/Industrial IoT (IIoT), and the high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this article, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on the state of the art for security and privacy and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.
0

A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing

Xiaomin Li et al.Feb 19, 2019
At present, smart manufacturing computing framework has faced many challenges such as the lack of an effective framework of fusing computing historical heritages and resource scheduling strategy to guarantee the low-latency requirement. In this paper, we propose a hybrid computing framework and design an intelligent resource scheduling strategy to fulfill the real-time requirement in smart manufacturing with edge computing support. First, a four-layer computing system in a smart manufacturing environment is provided to support the artificial intelligence task operation with the network perspective. Then, a two-phase algorithm for scheduling the computing resources in the edge layer is designed based on greedy and threshold strategies with latency constraints. Finally, a prototype platform was developed. We conducted experiments on the prototype to evaluate the performance of the proposed framework with a comparison of the traditionally-used methods. The proposed strategies have demonstrated the excellent real-time, satisfaction degree (SD), and energy consumption performance of computing services in smart manufacturing with edge computing.
Load More