RP
Ryan Peters
Author with expertise in Computational Principles of Motor Control and Learning
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
57
h-index:
14
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli

Ryan Peters et al.Jul 1, 2015
J
J
B
R
Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality.
0

Learning to stand with unexpected sensorimotor delays

Brandon Rasman et al.Aug 10, 2021
+5
R
P
B
Human standing balance relies on self-motion estimates that are used by the nervous system to detect unexpected movements and enable corrective responses and adaptations in control. These estimates must accommodate for inherent delays in sensory and motor pathways. Here, we used a robotic system to simulate human standing about the ankles in the anteroposterior direction and impose sensorimotor delays into the control of balance. Imposed delays destabilized standing, but through training, participants adapted and re-learned to balance with the delays. Before training, imposed delays attenuated vestibular contributions to balance and triggered perceptions of unexpected standing motion, suggesting increased uncertainty in the internal self-motion estimates. After training, vestibular contributions partially returned to baseline levels and larger delays were needed to evoke perceptions of unexpected standing motion. Through learning, the nervous system accommodates balance sensorimotor delays by causally linking whole-body sensory feedback (initially interpreted as imposed motion) to self-generated balance motor commands.
0

Unperceived motor actions of the balance system interfere with the causal attribution of self-motion

Romain Tisserand et al.Aug 27, 2022
+3
N
B
R
The instability of human bipedalism demands that the brain accurately senses balancing self-motion and determines whether movements originate from self-generated actions or external disturbances. Here, we challenge the longstanding notion that this process relies on a single representation of the body and world to accurately perceive postural orientation and organize motor responses to control balance self-motion. Instead, we find that the conscious sense of balance can be distorted by the corrective control of upright standing. Using psychophysics, we quantified thresholds to imposed perturbations and balance responses evoking cues of self-motion that are (in)distinguishable from corrective balance actions. When standing immobile, participants clearly perceived imposed perturbations. Conversely, when freely balancing, participants often misattributed their own corrective responses as imposed motion because their balance system had detected, integrated, and responded to the perturbation in the absence of conscious perception. Importantly, this only occurred for perturbations encoded ambiguously with balance-correcting responses and that remained below the natural variability of ongoing balancing oscillations. These findings reveal that our balance system operates on its own sensorimotor principles that can interfere with causal attribution of our actions, and that our conscious sense of balance depends critically on the source and statistics of induced and self-generated motion cues.
0

Age related changes in skin sensitivity assessed with smartphone vibration testing

Owen Lindsay et al.Aug 1, 2024
+5
J
H
O
The capacity to perceive tactile input at the fingertips, referred to as tactile sensitivity, is known to diminish with age due to regressive changes to mechanoreceptor density and morphology. Sensitivity is measured as perceptual responses to stimuli of varying intensity. Contrary to traditional sensitivity monitoring instruments, smartphones are uniquely suited for remote assessment and have shown to deliver highly calibrated stimuli along a broad spectrum of intensity, which may improve test reliability. The aim of this study was to evaluate a vibration-emitting smartphone application, the Vibratus App, as a mode of estimating tactile sensory thresholds in the aging adult. The peripheral nerve function of 40 neurologically healthy volunteers (ages 18–71) was measured using monofilaments, a 128-Hz tuning fork, the Vibratus App, and nerve conduction studies (NCS). Between group differences were analyzed to determine each measurement's sensitivity to age. Spearman correlation coefficients depicted the associative strength between hand-held measurements and sensory nerve action potential (SNAP) amplitude. Inter-rater reliability of traditional instruments and the software-operated smartphone were assessed by intraclass correlation coefficient (ICC2,k). Measurements taken with Vibratus App were significantly different between age groups (p < 0.001). The inter-rater reliability of monofilament, smartphone vibration, and tuning fork testing was moderate to good (ICC2,k = 0.65, 0.69, and 0.79, respectively). The findings of this study support further investigation of smartphones as sensitivity monitoring devices for at home monitoring of skin sensitivity.
0

Pan-cortical cellular imaging in freely behaving mice using a miniaturized micro-camera array microscope (mini-MCAM)

Jia Hu et al.Jul 6, 2024
+11
D
A
J
Understanding how circuits in the brain simultaneously coordinate their activity to mediate complex ethnologically relevant behaviors requires recording neural activities from distributed populations of neurons in freely behaving animals. Current miniaturized imaging microscopes are typically limited to imaging a relatively small field of view, precluding the measurement of neural activities across multiple brain regions. Here we present a miniaturized micro-camera array microscope (mini-MCAM) that consists of four fluorescence imaging micro-cameras, each capable of capturing neural activity across a 4.5 mm x 2.55 mm field of view (FOV). Cumulatively, the mini-MCAM images over 30 mm 2 area of sparsely expressed GCaMP6s neurons distributed throughout the dorsal cortex, in regions including the primary and secondary motor, somatosensory, visual, retrosplenial, and association cortices across both hemispheres. We demonstrate cortex-wide cellular resolution in vivo Calcium (Ca 2+ ) imaging using the mini-MCAM in both head-fixed and freely behaving mice.
0

Computer vision guided rapid and precise automated cranial microsurgeries in rodents

Zahra Navabi et al.Sep 5, 2024
+6
B
R
Z
Neuroscientists employ various experimental procedures to interface with the brain to study and perturb the neural activity during behavior. A common procedure that allows such physical interfacing is cranial microsurgery, wherein small to large craniotomies are performed in the overlying skull for insertion of neural interfaces or implantation of optically clear windows for long-term cranial observation. Performing craniotomies is, however, a skilled task that requires significant time and practice and further needs to be carried out precisely to ensure that the procedure does not cause damage to the underlying brain and dura. Here, we present a computer vision-guided craniotomy robot (CV-Craniobot) that utilizes machine learning to accurately estimate the dorsal skull anatomy from optical coherence tomography (OCT) images. Instantaneous information of the skull morphology is used by a robotic mill to rapidly and precisely remove the skull from a desired craniotomy location. We show that the CV-Craniobot can perform small (2 - 4 mm diameter) craniotomies with near 100% success rates within 2 minutes and large craniotomies encompassing most of the dorsal cortex in less than 5 minutes. Thus, the CV-Craniobot enables rapid and precise craniotomies, significantly reducing surgery time as compared to human practitioners and eliminating the need for long training.
0

Author response: Learning to stand with unexpected sensorimotor delays

Brandon Rasman et al.Jul 21, 2021
+5
R
P
B
Article Figures and data Abstract eLife digest Introduction Results Discussion Materials and methods Data availability References Decision letter Author response Article and author information Metrics Abstract Human standing balance relies on self-motion estimates that are used by the nervous system to detect unexpected movements and enable corrective responses and adaptations in control. These estimates must accommodate for inherent delays in sensory and motor pathways. Here, we used a robotic system to simulate human standing about the ankles in the anteroposterior direction and impose sensorimotor delays into the control of balance. Imposed delays destabilized standing, but through training, participants adapted and re-learned to balance with the delays. Before training, imposed delays attenuated vestibular contributions to balance and triggered perceptions of unexpected standing motion, suggesting increased uncertainty in the internal self-motion estimates. After training, vestibular contributions partially returned to baseline levels and larger delays were needed to evoke perceptions of unexpected standing motion. Through learning, the nervous system accommodates balance sensorimotor delays by causally linking whole-body sensory feedback (initially interpreted as imposed motion) to self-generated balance motor commands. eLife digest When standing, neurons in the brain send signals to skeletal muscles so we can adjust our movements to stay upright based on the requirements from the surrounding environment. The long nerves needed to connect our brain, muscles and sensors lead to considerable time delays (up to 160 milliseconds) between sensing the environment and the generation of balance-correcting motor signals. Such delays must be accounted for by the brain so it can adjust how it regulates balance and compensates for unexpected movements. Aging and neurological disorders can lead to lengthened neural delays, which may result in poorer balance. Computer modeling suggests that we cannot maintain upright balance if delays are longer than 300-340 milliseconds. Directly assessing the destabilizing effects of increased delays in human volunteers can reveal how capable the brain is at adapting to this neurological change. Using a custom-designed robotic balance simulator, Rasman et al. tested whether healthy volunteers could learn to balance with delays longer than the predicted 300-340 millisecond limit. In a series of experiments, 46 healthy participants stood on the balance simulator which recreates the physical sensations and neural signals for balancing upright based on a computer-driven virtual reality. This unique device enabled Rasman et al. to artificially impose delays by increasing the time between the generation of motor signals and resulting whole-body motion. The experiments showed that lengthening the delay between motor signals and whole-body motion destabilized upright standing, decreased sensory contributions to balance and led to perceptions of unexpected movements. Over five days of training on the robotic balance simulator, participants regained their ability to balance, which was accompanied by recovered sensory contributions and perceptions of expected standing, despite the imposed delays. When a subset of participants was tested three months later, they were still able to compensate for the increased delay. The experiments show that the human brain can learn to overcome delays up to 560 milliseconds in the control of balance. This discovery may have important implications for people who develop balance problems because of older age or neurologic diseases like multiple sclerosis. It is possible that robot-assisted training therapies, like the one in this study, could help people overcome their balance impairments. Introduction The nervous system learns and maintains motor skills by forming probabilistic estimates of self-motion. The resulting inferred relationships between sensory and motor signals form a representation of the world and self that allows the brain to identify unexpected behavior and adapt motor control (Friston, 2010; Krakauer and Mazzoni, 2011; Wolpert et al., 2011). Due to neural conduction delays, these estimates of self-motion rely on the expected timing between motor commands and resulting sensory feedback. As such, errors associated with self-generated movement increase with larger feedback delays (Gifford and Lyman, 1967; Miall et al., 1985; Smith et al., 1960). Through repeated exposure to an imposed delay, the brain can learn to expect the delayed feedback associated with self-motion, leading to improvements in movement control with delays up to 430 ms (Cunningham et al., 2001; Miall and Jackson, 2006). When balancing upright, sensory feedback associated with lower-limb motor commands is delayed by up to ~100–160 ms (Forbes et al., 2018; Kuo, 2005; van der Kooij et al., 1999). As a consequence of these relatively long delays, computational feedback models of upright standing predict that balance controllers cannot adjust their sensorimotor gains and stabilize balance in the anteroposterior (AP) direction with imposed delays larger than ~300–340 ms (Milton and Insperger, 2019; van der Kooij and Peterka, 2011). These predictions contrast the reported upper-limb sensorimotor adaptation to imposed delays (Cunningham et al., 2001; Miall and Jackson, 2006). The present study aims to directly quantify the destabilizing effects of imposed delays between ankle torque and whole-body motion during standing balance, and to determine the underlying mechanisms responsible for any subsequent adaptation and learning. Imposed delays inserted within the balance control task are expected to increase postural oscillations and, past a critical delay, lead to falls (Bingham et al., 2011; Milton and Insperger, 2019; van der Kooij and Peterka, 2011). The sensorimotor mechanisms underlying these predicted effects, however, are unknown. Of particular interest is the vestibular control of balance due to its task-dependent modulations (Fitzpatrick and McCloskey, 1994; Forbes et al., 2016; Luu et al., 2012; Mian and Day, 2014), which rely on predictable associations between self-generated motor and resulting sensory signals. For example, participants exposed to novel vestibular feedback of balance motion initially exhibit increased postural oscillations but decreased muscle responses to a vestibular error signal (Héroux et al., 2015). With practice, participants improve their balance and vestibular-evoked muscle responses return to baseline amplitudes, suggesting that the brain updated its vestibular estimates of self-motion. Based on these observations, we hypothesized that increasing balance delays would initially increase whole-body motion and attenuate vestibular-evoked responses but these effects would diminish following a learning period. Another critical feature of probabilistic associations between motor and sensory cues is our ability to perceptually distinguish between self-generated or externally imposed motions. Imposed sensorimotor delays during self-generated movements evoke a sensation interpreted to arise from external causes rather than oneself (Blakemore et al., 1999; Farrer et al., 2008; Wen, 2019). Repeated exposures to delayed self-generated touch can re-align the perceived timing of the contact with the imposed delay (Kilteni et al., 2019; Stetson et al., 2006). Therefore, we further hypothesized that balance behavior under imposed delays would be inferred as externally imposed motion but this likelihood would decrease through repeated exposure to the delay. To test these hypotheses, we performed three experiments where participants balanced in a robotic simulator (Figure 1) in the AP direction with imposed delays ranging from 20 to 500 ms. These delays were in addition to the physiological delays (~100–160 ms) inherent to standing balance. In Experiment 1, we characterized standing behavior across this range of delays. Generally, whole-body sway variability increased with larger imposed delays and participants repeatedly fell into virtual limits of the balance simulation (i.e., 6° anterior and 3° posterior) for added delays larger than ~200–300 ms. In Experiment 2, participants trained to balance upright with a 400 ms added delay (testing beyond the critical delay previously proposed) for 100 min over five consecutive days. We probed the vestibular-evoked muscle responses and the perception of body motion before, after and 3 months following training to assess how the brain adapted to and processed the delayed sensory feedback. Initially, participants exhibited increased postural oscillations while the vestibular contributions to balance decreased and their perception of unexpected balance motion increased. After training, participants' balance behavior improved, their vestibular-evoked responses increased, and larger imposed delays were needed to elicit perceptions of unexpected balance motion. To further evaluate the effect of imposed delays on the vestibular control and perception of balance, we exposed participants to transient delays (Experiment 3). Within a few seconds of transitioning to a 200 ms delay, whole-body sway variability increased, vestibular responses attenuated (~70–90% decline) and participants perceived unexpected balancing motion. Collectively, our findings demonstrate how novel sensorimotor delays disrupt standing balance and suggest that the nervous system can learn to maintain standing balance with imposed delays by associating delayed whole-body motion with self-generated balancing motor commands. Figure 1 Download asset Open asset Experimental setup and block diagram of robotic simulation. (A) The participant stood on a force plate mounted to an ankle-tilt platform and was securely strapped to a rigid backboard. The ankle-tilt platform and backboard were independently controlled by rotary motors. In all experiments, the ankle-tilt platform was held at horizontal (earth-fixed reference) while the backboard rotated the participant in the anteroposterior plane. Motion of the backboard was controlled by ankle torques exerted on the force plate based on the mechanics of an inverted pendulum. The backboard rotated about an axis that passed through the participant's ankles (dashed line). Participants wore 3D goggles and viewed a virtual scene of a courtyard. (B) Participants balanced the robotic simulator as it operated with a 20–500 ms delay. Torque signals (T) from the force plate were buffered in the robotic simulation computer model such that angular rotation of the whole body (θ) about the ankle joint could be delayed. (C) Experimental design. Experiment 1 involved testing standing balance when naïve participants (n = 13) were first exposed to delays. Experiment 2 involved learning to balance with delays and was performed in two groups: vestibular testing and perceptual testing (see Experiment 2 methods). All participants who performed the learning experiments (vestibular testing group, n = 8; perceptual testing group, n = 8) completed an identical training protocol. The vestibular and perceptual tests were completed before, immediately after, and ~3 months following training. Training was completed over 5 days, in which the participant balanced the robotic simulator with a 400 ms delay (20 min per day). Experiment 3 tested a new group of participants (n = 7) and evaluated the time-dependent attenuation in vestibular-evoked responses together with changes in sway behavior and perception of unexpected balance motion. Trials in Experiment 3 were of similar design to perceptual testing in Experiment 2 (see panel E), except that the robot only transitioned between baseline (20 ms) and 200 ms delays. (D) Raw data of a sample participant from Experiment 2 vestibular testing. The participant was exposed to electrical vestibular stimulation while balancing the robotic simulator as it operated at fixed delays. Raw traces of the vestibular stimulus (green), soleus muscle EMG (blue), and whole-body position (black) are shown for a single trial at each delay condition. (E) During perceptual testing (Experiments 2 and 3), the participant balanced the robotic balance simulator and held a button switch. Delays were manipulated in the robotic balance simulation and the participant was required to press and hold the button when unexpected balance motion was detected. Raw data traces of whole-body position (black, upper trace), imposed simulation delay (black, lower trace), and the button switch (red) are shown during a perceptual trial from Experiment 2. Black arrows indicate examples of imposed delays that did not elicit a perceptual detection. Figure 1A was adapted from Shepherd, 2014. Results Experiment 1: imposed sensorimotor delays increase postural oscillations Thirteen healthy participants were instructed to stand quietly on a robotic balance simulator for 60 s trials (Materials and methods) while experiencing fixed imposed delays (20, 100, 200, 300, 400, 500 ms) between the torques generated at their feet and resulting whole-body motion. These delays were in addition to the ~100–160 ms sensorimotor feedback delays inherent to standing balance. Whole-body sway was recorded throughout these trials to quantify the effect of the additional delay on standing balance. The robot was programmed to rotate the whole body in the AP direction about the participant's ankles. Angular position limits of 6° anterior and 3° posterior from vertical were imposed into the simulation to represent the physical limits of sway during standing balance, whereby the robot constrained the angular rotation when these virtual limits were exceeded (see Materials and methods). While balancing on the robotic simulator at the 20 ms delay (baseline condition), all participants maintained standing balance with small postural oscillations around their preferred upright posture (sway velocity variance: 0.07 ± 0.07 [°/s]2 [mean ± standard deviation]). Whole-body oscillations increased with the imposed delays, leading to marked difficulties in maintaining a stable posture when a 400 ms delay was imposed. Representative data (Figure 2A) illustrate a participant exceeding the virtual balance limits (i.e., whole-body position traces exceeding dashed lines) 20 times within a 60 s period. This observation was confirmed in the group data. No participant exceeded these virtual balance limits at the 20 ms condition (only one participant reached the limit during the 100 ms condition) whereas every participant exceeded the virtual limits at least once within the 60 s balance period when delays were ≥200 ms. There was a main effect of delay on sway velocity variance (extracted over 2 s windows of continuous balance; Materials and methods), such that sway velocity variance was smallest for the 20 ms condition (0.07 ± 0.07 [°/s]2) and increased with the magnitude of the imposed delay and reached a maximum at 400 ms (21.08 ± 15.41 [°/s]2; p<0.001; Table 1 and Figure 2B). We also quantified the percent time participants balanced within the virtual limits. There was a main effect of delay on the percent time within the balance limits (p<0.001; Table 1 and Figure 2B), which decreased from 100% ± 0% during the 20 ms condition to 54% ± 9% during the 500 ms condition. Decomposition of the main effects revealed that participants exhibited greater sway velocity variance and lower percentage of trial duration within the virtual limits compared to the 20 ms condition when imposed delays were ≥200 ms (all p-values <0.05). Figure 2 Download asset Open asset Standing balance behavior with delays. (A) Experiment 1: raw traces of body position (black) and velocity (blue) for a single participant balancing on the robotic simulator for 60 s at different imposed delay conditions. Dashed lines represent the virtual position limits (6° anterior, 3° posterior). Sway velocity variance was calculated over 2 s windows (extracted by taking segments when sway was within balance limits for at least two continuous seconds) and the resulting data were averaged to provide a single estimate per participant and delay (see Materials and methods). Data that are not grayed out represent periods where there is at least two continuous seconds of balance within the virtual position limits. The percentage of trial time participant's whole-body position remained within the limits was also quantified. (B) Group (n = 13) averages of sway velocity variance (blue) and percent time within balance limits (black). Error bars represent ± s.e.m. Table 1 Summary of statistical results. DelayLearningDelay × learning interactionVariableFpFpFpSway velocity variance Exp 1: standing balance trialsF(5,59.15) = 14.98< 0.001N/AN/AN/AN/AExp 2: vestibular testingF(5,111.26) = 33.89< 0.001F(2,113.19) = 46.65< 0.001F(10,111.25) = 5.72< 0.001Exp 2: perceptual testingF(6,118.83) = 31.00< 0.001F(2,121.47) = 25.82< 0.001F(12,118.83) = 2.08= 0.023Other variables Exp 1: percent within limitsF(5,60) = 127.48< 0.001N/AN/AN/AN/AExp 2: cross-covarianceW(5) = 1158.86< 0.001W(2) = 70.57< 0.001W(7) = 90.89< 0.001Exp 2: perceptual thresholdN/AN/AF(2,11.84) = 7.52= 0.008N/AN/A For Exp 2, vestibular cross-covariance responses (peak-to-peak amplitudes) were analyzed using an ordinal logistic regression after rank transforming the data. Experiment 2: learning to stand upright with a 400 ms delay In a second set of experiments, we tested whether humans can adapt and learn to stand with imposed sensorimotor delays. Participants (n = 16) performed a training protocol over five consecutive days (two 10 min trials per day) where they balanced on the robot with a 400 ms delay. To explore the neural processes involved in balancing with novel sensorimotor delays, we characterized the participants' vestibular control of balance (vestibular testing, see below) or their perceptual detection of unexpected motion (perceptual testing, see below) before and after training. Twelve participants also returned ~3 months later to examine whether any learning was retained. Within the first minute of training with the 400 ms delay, no participant could remain upright: on average, they reached the forward or backward virtual balancing limits 18 ± 5 times (see representative participant in Figure 3A) and could only remain within the balancing limits for 64% ± 9 % of the time (or 38.5 s). This unstable balancing behavior was characterized by large whole-body sway velocity variance (12.62 ± 9.03 [°/s]2). During training, participants progressively reduced the variance of their sway velocity and increased the percentage of time they balanced within the virtual limits. The first minute of each day (i.e., start of every 20 min interval) was characterized by an increase of sway velocity variance and a decrease of percentage of time within the limits relative to the last min of the previous day (see filled circles, Figure 3B). By the end of training (100 min), participants exhibited an ~80% decrease in sway velocity variance and a 51% increase in percent time within the virtual limits. First-order exponential fits estimated the changes in sway velocity variance and percent time within the limits. The time constant for the decrease in sway velocity variance (i.e., 63.2% attenuation) was 27.9 min (corresponding to a value of 6.44 [°/s]2), and the time constant for the increase in percent time within limits (i.e., 63.2% increase) was 32.5 min (corresponding to a value of 85% within the balance limits). By the last 60 s of training, participants could balance the robot within the simulation limits on average for 97% ± 3% of the time (or 59.2 s), with four participants capable of balancing for the final 60 s interval without reaching a limit. However, the smallest sway velocity variance observed with a 400 ms imposed delay remained ~38× greater than the baseline condition (400 ms at 93rd min vs. 20 ms variance: 1.91 ± 1.12 [°/s]2 vs. 0.05 ± 0.05 [°/s]2; t(15) = 6.74: p<0.001). Figure 3 Download asset Open asset Standing balance behavior during the training protocol. (A) Whole-body position (°; black) and velocity (°/s; blue) traces of a representative participant when balancing in the first (left) and last (right) minute of training. During training trials, the robotic simulator operated with a 400 ms delay. (B) Average sway velocity variance and percentage of time spent within the virtual balance limits (inset) estimated over 1 min intervals during the 400 ms delay training (open circles) from all participants who completed the training protocol (n = 16). The first interval for each training session is represented by filled circles. Data from vestibular testing and perceptual testing groups were combined because both groups performed the same training protocol. Sway velocity variance progressively decreased and percentage of the interval time within the virtual limits progressively increased with each session of training (one session = 20 intervals). The solid lines show the fitting of sway velocity variance and percentage within virtual balance limits to a first-order exponential function using a least-square method: fx=a*exp⁡-xb+c. For sway velocity variance, a = 11.61, b = 27.86, and c = 2.17; for percentage time within balance limits, a = –37.38, b = 32.45, and c = 99.12. The dashed horizontal lines represent the values at the estimated time constants. Data for the first minute of standing at 20 ms (open diamond) and the three minutes at 3 months after training (retention) at the 400 ms delay (open squares) are also presented. Error bars represent the s.e.m. for all data. When participants (n = 12) returned for retention testing ~3 months later, these balance improvements were partially maintained. Sway velocity variance in the first minute of retention testing was ~60.8% lower than the sway velocity variance from the first minute of training (4.95 ± 2.32 [°/s]2 vs. 12.62 ± 9.03 [°/s]2; independent samples t-test: t(26) = –2.86, p<0.01). Sway velocity variance at the first minute of retention testing, however, remained greater than the last minute of training (4.95 ± 2.32 [°/s]2 vs. 2.55 ± 1.76 [°/s]2; independent samples t-test: t(26) = 3.11, p<0.01). Similarly, the first minute of retention was associated with a greater percentage of time within the balancing limits compared to the first minute of training (88% ± 9% vs. 64% ± 9%; independent samples t-test: t(26) = 6.67, p<0.001), but less than the last minute of training (88% ± 9% vs. 97% ± 3%; independent samples t-test: t(26) = –3.68, p<0.01). When using only data from participants who performed the retention session (n = 12; paired t-tests with df = 11), sway velocity variance and percent time within the balance limits revealed identical results (all p-values < 0.01). Overall, these results indicate that while standing with an imposed 400 ms delay is initially difficult (if not impossible), participants learn to balance with the delay with sufficient training (i.e., >30 min) and this ability is partially retained 3 months later. Vestibular testing: sensorimotor delays decrease vestibular contributions to balance During vestibular testing, we probed the vestibular contribution to soleus muscle activity by exposing participants (n = 8) to a non-painful electrical vestibular stimulus (EVS) while they balanced on the robot at different delays (20–500 ms; Materials and methods) before, after, and 3 months following training. Vestibular-evoked muscle responses are known to attenuate when actual sensory feedback does not align with expected estimates from balancing motor commands (Héroux et al., 2015; Luu et al., 2012). Therefore, we hypothesized that increasing the delay between ankle torques and body motion would progressively diminish the vestibular response. We further hypothesized that learning to control balance with imposed delays would allow the brain to update its sensorimotor estimates of balance motion and consequently increase the vestibular-evoked muscle responses. Frequency domain measures (coherence and gain; see Materials and Methods) were evaluated qualitatively using the pooled participant estimates because with delays ≥ 200 ms, single-participant coherence only exceeded significance at sporadic frequencies and significant coherence is needed to obtain a reliable gain estimate. Our time-domain measure (cross-covariance; see Materials and methods), which estimates the net vestibular contribution to muscle activity at all stimulated frequencies, was extracted on a participant-by-participant basis and used for statistical analysis. Participants exhibited the largest vestibular-evoked muscle responses (coherence, gain,and cross-covariance) for the 20 and 100 ms delay conditions, where significant coherence was observed at frequencies between 0 and 25 Hz and cross-covariance responses were characterized by short (~60 ms) and medium (~100 ms) latency peaks exceeding the 95% confidence interval (see Figure 4A). Prior to learning, pooled coherence and gain decreased with imposed delays ≥ 200 ms, and coherence fell below the significance threshold at most frequencies for delays ≥ 300 ms. Similarly, cross-covariance amplitudes decreased with increasing delay (≥200 ms), with only five out of eight participants showing significant biphasic muscle responses (cross-covariance) for the 400 ms delay condition (and six out of eight participants at 500 ms).Across training conditions (pre, post, retention), increasing the delay reduced the cross-covariance peak-to-peak amplitudes (main effect of delay, p<0.001; Figure 4A and B, Table 1). Figure 4 Download asset Open asset Experiment 2 vestibular-evoked muscle responses. Data are from pre-learning (n = 8), post-learning (n = 8), and retention (n = 7) conditions. (A) Coherence, gain, and cross-covariance between vestibular stimuli and rectified soleus EMG activity were calculated from the data concatenated from all participants. Estimates are presented from all six delay conditions (see legend). Horizontal dashed lines represent 95% confidence limits for coherence and the 95% confidence intervals for cross-covariance. Note that gain estimates are only reliable at frequencies with significant coherence; therefore, at delays ≥ 300 ms, where coherence falls below significance at most frequency points, the corresponding gain in the pre-learning condition was plotted using light lines. EMG was scaled by baseline EMG from each testing session (see Materials and methods), resulting in units for gain and cross-covariance of %EMG/mA and %EMG mA, respectively. (B) Group cross-covariance amplitudes (peak-to-peak) plotted relative to imposed delay. Across pooled estimates and group data, vestibular responses attenuated with increasing imposed delays and their amplitudes partially recovered after training. (C) Average sway velocity variance during vestibular stimulation trials. Non-normally distributed group data (vestibular response amplitudes) are plotted as medians (horizontal lines in boxes), 25 and 75 percentiles (boxes) and extreme data points (error bars). Normally distributed data (sway velocity variance) are presented as means with s.e.m (error bars). Following training, pooled vestibular-evoked muscle responses (coherence, gain, cross-covariance) partially recovered in both the post-learning and retention phases. Every participant exhibited biphasic muscle responses that exceeded significance thresholds for every delay after training. A significant interaction between delay and learning was observed for the cross-covariance (p<0.001, Table 1), suggesting that the recovery of vestibular responses was dependent on the delay magnitude. Planned comparisons (Wilcoxon sign-rank test, Bonferroni corrected) revealed that cross-covariance response amplitudes were larger during post-learning relative to pre-learning for delays ≥ 200 ms (all p-values <0.05) and were larger during retention relative to pre-learning for 300 and 400 ms (p<0.05). Similar to Experiment 1, sway velocity variance generally increased with increasing delays (Figure 4C, Table 1, Table 2; p<0.001), while learning decreased sway velocity variance at almost all imposed delays (Figure 4C, Table 1; p<0.001), resulting in a significant delay × learning interaction (Figure 4C, Table 1; p<0.001). Planned comparisons (paired t-tests, Bonferroni corrected) revealed that sway velocity variance decreased during post-learning relative to pre-learning for delays between 20 and 400 ms (all p-values <0.05) and decreased during retention relative to pre-learning for delays between 100 and 400 ms (all p-values <0.05). Because training was only performed with the 400 ms delay, these training-related changes in vestibular responses (cross-covariance) and sway behavior across delays indicate that learning generalized to different sensorimotor delays. Table 2 Vestibular response magnitude and sway behavior from vestibular stimulation trials in Experiment 2 vestibular testing. Delay (ms)20100200300400500Pre-learning (n = 8)Cross-cov. (%EMG·mA)17.7/16.020.7/18.814.0/11.08.10/12.45.54/10.94.35/5.50Sway velocity variance [°/s]20.18 ± 0.170.93 ± 0.586.52 ± 4.4011.35 ± 5.1016.79 ± 8.5111.80 ± 6.53Post-learning (n = 8)Cross-cov. (%EMG·mA)20.4/23.220.4/26.721.5/19.619.1/20.515.7/16.014.1/21.4Sway velocity variance [°/s]20.05 ± 0.050.13 ± 0.090.54 ± 0.321.58 ± 0.744.20 ± 1.056.99 ± 2.61Retention (n = 7)Cross-cov. (%EMG·mA)18.8/20.015.3/17.619.3/20.116.4/12.511.8/9.1610.6/13.3Sway velocity variance [°/s]20.09 ± 0.110.20 ± 0.120.90 ± 0.482.91 ± 1.255.51 ± 0.986.48 ± 3.51 Perceptual testing: sensorimotor delays induce a perception of unexpected balance motion During perceptual testing, we assessed whether
0

Micro-camera Arrays for Ultra-widefield, Multi-site Cellular Resolution Calcium Imaging Across the Dorsal Cortex of Behaving Mice.

Arun Cherkkil et al.Jan 1, 2024
+6
I
J
A
Here, we introduce a miniaturized multi camera microscope that can simultaneously capture cellular resolution neural activity from multiple large fields of view of the cortex in a freely moving mouse.