SC
Sien Chi
Author with expertise in Microwave Photonics and Optical Access Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(31% Open Access)
Cited by:
1,317
h-index:
50
/
i10-index:
230
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s

Tsai-Chen Wu et al.Jan 25, 2017
White light generation by mixing red, green, and blue laser diodes (RGB LDs) was demonstrated with Commission International de l'Eclairage coordinates of (0.2928, 0.2981), a correlated color temperature of 8382 K, and a color rendering index of 54.4 to provide a maximal illuminance of 7540 lux. All the white lights generated using RGB LDs were set within the risk group-1 criterion to avoid the blue-light hazard to human eyes. In addition, the RGB-LD mixed white light was diffused using a frosted glass to avoid optical aberration and to improve the performance of the lighting source. In addition, visible light communication (VLC) by using RGB-LD mixed white-light carriers and a point-to-point scheme over 1 m was performed in the directly modulated 16-QAM OFDM data format. In back-to-back transmission, the maximal allowable data rate at 10.8, 10.4, and 8 Gbps was determined for R, G, and B LDs, respectively. Moreover, the RGB-LD mixed white light-based indoor wavelength-division multiplexing (WDM)-VLC system yielded a total allowable transmission data rate of 8.8 Gbps over 0.5 m in free space. Such a high-speed RGB-LD mixed WDM-VLC system without any channel interference can be used to simultaneously provide data transmission and white lighting in an indoor environment.
0

450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM

Yu‐Chieh Chi et al.May 8, 2015
A TO-38-can packaged Gallium nitride (GaN) blue laser diode (LD) based free-space visible light communication (VLC) with 64-quadrature amplitude modulation (QAM) and 32-subcarrier orthogonal frequency division multiplexing (OFDM) transmission at 9 Gbps is preliminarily demonstrated over a 5-m free-space link. The 3-dB analog modulation bandwidth of the TO-38-can packaged GaN blue LD biased at 65 mA and controlled at 25°C is only 900 MHz, which can be extended to 1.5 GHz for OFDM encoding after throughput intensity optimization. When delivering the 4-Gbps 16-QAM OFDM data within 1-GHz bandwidth, the error vector magnitude (EVM), signal-to-noise ratio (SNR) and bit-error-rate (BER) of the received data are observed as 8.4%, 22.4 dB and 3.5 × 10(-8), respectively. By increasing the encoded bandwidth to 1.5 GHz, the TO-38-can packaged GaN blue LD enlarges its transmission capacity to 6 Gbps but degrades its transmitted BER to 1.7 × 10(-3). The same transmission capacity of 6 Gbps can also be achieved with a BER of 1 × 10(-6) by encoding 64-QAM OFDM data within 1-GHz bandwidth. Using the 1.5-GHz full bandwidth of the TO-38-can packaged GaN blue LD provides the 64-QAM OFDM transmission up to 9 Gbps, which successfully delivers data with an EVM of 5.1%, an SNR of 22 dB and a BER of 3.6 × 10(-3) passed the forward error correction (FEC) criterion.
0

Using n- and p-Type Bi2Te3 Topological Insulator Nanoparticles To Enable Controlled Femtosecond Mode-Locking of Fiber Lasers

Yung‐Hsiang Lin et al.Mar 4, 2015
Mechanically triturated n- and p-type Bi2Te3 nanoparticles, the nanoscale topological insulators (TIs), are employed as nonlinear saturable absorbers to passively mode-lock the erbium-doped fiber lasers (EDFLs) for sub-400 fs pulse generations. A novel method is proposed to enable the control on the self-amplitude modulation (SAM) of TI by adjusting its dopant type. The dopant type of TI only shifts the Fermi level without changing its energy bandgap, that the n- and p-type Bi2Te3 nanoparticles have shown the broadband saturable absorption at 800 and 1570 nm. In addition, both the complicated pulse shortening procedure and the competition between hybrid mode-locking mechanisms in the Bi2Te3 nanoparticle mode-locked EDFL system have been elucidated. The p-type Bi2Te3 with its lower effective Fermi level results in more capacity for excited carriers than the n-type Bi2Te3, which shortens the pulse width by enlarging the SAM depth. However, the strong self-phase modulation occurs with reduced linear loss and highly nonsaturated absorption, which dominates the pulse shortening mechanism in the passively mode-locked EDFL to deliver comparable pulse widths of 400 and 385 fs with n- and p-type Bi2Te3 nanoparticles, respectively. The first- and second-order Kelly sidebands under soliton mode-locking regime are also observed at offset frequencies of 1.31 and 1.94 THz, respectively.
Load More