MR
Marko Rašeta
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
56
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Genome-wide RNA polymerase stalling shapes the transcriptome during aging

Àkos Gyenis et al.Jan 19, 2023
+8
J
J
À
Gene expression profiling has identified numerous processes altered in aging, but how these changes arise is largely unknown. Here we combined nascent RNA sequencing and RNA polymerase II chromatin immunoprecipitation followed by sequencing to elucidate the underlying mechanisms triggering gene expression changes in wild-type aged mice. We found that in 2-year-old liver, 40% of elongating RNA polymerases are stalled, lowering productive transcription and skewing transcriptional output in a gene-length-dependent fashion. We demonstrate that this transcriptional stress is caused by endogenous DNA damage and explains the majority of gene expression changes in aging in most mainly postmitotic organs, specifically affecting aging hallmark pathways such as nutrient sensing, autophagy, proteostasis, energy metabolism, immune function and cellular stress resilience. Age-related transcriptional stress is evolutionary conserved from nematodes to humans. Thus, accumulation of stochastic endogenous DNA damage during aging deteriorates basal transcription, which establishes the age-related transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how DNA damage functionally underlies major aspects of normal aging.
16
Citation56
10
Save
0

Mathematical model of transcription loss due to accumulated DNA damage

Marko Rašeta et al.Jul 18, 2024
+3
S
J
M
We offer a simple mathematical model of gene transcription loss due to accumulated DNA damage in time based on widely agreed biological axioms. Closed form formulae characterizing the distribution of the underlying stochastic processes representing the transcription loss upon specified number of DNA damages are obtained. Moreover, the asymptotic behavior of the stochastic process was analyzed. Finally, the distribution of the first hitting time of transcription loss to specified biologically relevant levels was studied both analytically and computationally on mice data.