CS
Chenghua Sun
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
31
(23% Open Access)
Cited by:
13,079
h-index:
75
/
i10-index:
264
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4

Gang Liu et al.Aug 3, 2010
Electronic structure intrinsically controls the light absorbance, redox potential, charge-carrier mobility, and consequently, photoreactivity of semiconductor photocatalysts. The conventional approach of modifying the electronic structure of a semiconductor photocatalyst for a wider absorption range by anion doping operates at the cost of reduced redox potentials and/or charge-carrier mobility, so that its photoreactivity is usually limited and some important reactions may not occur at all. Here, we report sulfur-doped graphitic C3N4 (C3N4−xSx) with a unique electronic structure that displays an increased valence bandwidth in combination with an elevated conduction band minimum and a slightly reduced absorbance. The C3N4−xSx shows a photoreactivity of H2 evolution 7.2 and 8.0 times higher than C3N4 under λ > 300 and 420 nm, respectively. More strikingly, the complete oxidation process of phenol under λ > 400 nm can occur for sulfur-doped C3N4, which is impossible for C3N4 even under λ > 300 nm. The homogeneous substitution of sulfur for lattice nitrogen and a concomitant quantum confinement effect are identified as the cause of this unique electronic structure and, consequently, the excellent photoreactivity of C3N4−xSx. The results acquired may shed light on general doping strategies for designing potentially efficient photocatalysts.
0

Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction

Wei Zhou et al.Feb 18, 2019
Abstract The integration of heterometallic units and nanostructures into metal–organic frameworks (MOFs) used for the oxygen evolution reaction (OER) can enhance the electrocatalytic performance and help elucidate underlying mechanisms. We have synthesized a series of stable MOFs (CTGU‐10a1–d1) based on trinuclear metal carboxylate clusters and a hexadentate carboxylate ligand with a (6,6)‐connected nia net. We also present a strategy to synthesize hierarchical bimetallic MOF nanostructures (CTGU‐10a2–d2). Among these, CTGU‐10c2 is the best material for the OER, with an overpotential of 240 mV at a current density of 10 mA cm −2 and a Tafel slope of 58 mV dec −1 . This is superior to RuO 2 and confirms CTGU‐10c2 as one of the few known high‐performing pure‐phase MOF‐OER electrocatalysts. Notably, bimetallic CTGU‐10b2 and c2 show an improved OER activity over monometallic CTGU‐10a2 and d2. Both DFT and experiments show that the remarkable OER performance of CTGU‐10c2 is due to the presence of unsaturated metal sites, a hierarchical nanobelt architecture, and the Ni–Co coupling effect.
Load More