JM
Jeffrey Miller
Author with expertise in Catalytic Nanomaterials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
37
(49% Open Access)
Cited by:
10,208
h-index:
97
/
i10-index:
365
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites

Christopher Paolucci et al.Apr 12, 2016
The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13.
0

Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

Eric Peterson et al.Sep 15, 2014
Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts. There has been a great deal of interest in single-atom heterogeneous catalysis recently. Here, the authors show that industrially relevant lanthanum oxide-doped alumina supports are capable of stabilizing atomically dispersed palladium species, which are evaluated for low-temperature carbon monoxide oxidation.
0

Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting

Panlong Zhai et al.Jul 28, 2021
Abstract Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru 1 /D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru 1 /D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm −2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru 1 /D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru 1 /D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.
0

The effect of gold particle size on Au Au bond length and reactivity toward oxygen in supported catalysts

Jeffrey Miller et al.May 5, 2006
Au catalysts with different metallic particle sizes and supported on silica, alumina, titania, zirconia, ceria, and niobia were prepared, and the reduced catalysts were characterized by EXAFS spectroscopy. As the AuAu coordination number decreased, the interatomic bond length decreased. The AuAu bond length contraction appears to be independent of the support type. A correlation between the dispersion of Pt catalysts determined by hydrogen chemisorption and the EXAFS PtPt coordination number was established and used to determine the dispersion of fully reduced Au catalysts. In addition, the Au particle size was estimated using a literature correlation of the EXAFS coordination number. For particles larger than about 40 Å, there was little change in the metallic bond length, whereas in catalysts with gold particles smaller than 30 Å, the AuAu distance decreased with decreasing particle size, with a maximum contraction of about 0.15 Å. Decreasing particle size also brought a decrease in the intensity of the white line of the XANES spectrum. Both the decrease in bond distance and white line intensity were consistent with an increase in the d-electron density of Au atoms in very small particles. Au particles smaller than about 30 Å were also reactive to air, leading to oxidation of up to 15% of the atoms of the gold particles, depending on the size; larger particles were not oxidized. These oxidized Au atoms in small particles are suggested to be active for CO oxidation.
0
Paper
Citation459
0
Save
0

Size and Support Effects for the Water–Gas Shift Catalysis over Gold Nanoparticles Supported on Model Al2O3 and TiO2

Mayank Shekhar et al.Feb 8, 2012
The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2) supports allowed the imaging of the active catalyst and enabled a precise determination of the Au particle size distribution and particle shape using transmission electron microscopy (TEM). Further, the apparent reaction orders and the stretching frequency of CO adsorbed on Au(0) (near 2100 cm(-1)) determined by diffuse reflectance infrared spectroscopy (DRIFTS) depend on d. Because of the changes in reaction rates, kinetics, and the CO stretching frequency with number average Au particle size, it is determined that the dominant active sites are the low coordinated corner Au sites, which are 3 and 7 times more active than the perimeter Au sites for Au/Al(2)O(3) and Au/TiO(2) catalysts, respectively, and 10 times more active for Au on TiO(2) versus Al(2)O(3). From operando Fourier transform infrared spectroscopy (FTIR) experiments, it is determined that the active Au sites are metallic in nature. In addition, Au/Al(2)O(3) catalysts have a higher apparent H(2)O order (0.63) and lower apparent activation energy (9 kJ mol(-1)) than Au/TiO(2) catalysts with apparent H(2)O order of -0.42 to -0.21 and activation energy of 45-60 kJ mol(-1) at near 120 °C. From these data, we conclude that the support directly participates by activating H(2)O molecules.
0
Paper
Citation395
0
Save
0

A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts

Travis Marshall-Roth et al.Oct 19, 2020
Abstract Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum catalysts for the oxygen reduction reaction (ORR) in fuel cells; however, their active site structures remain poorly understood. A leading postulate is that the iron-containing active sites exist primarily in a pyridinic Fe-N 4 ligation environment, yet, molecular model catalysts generally feature pyrrolic coordination. Herein, we report a molecular pyridinic hexaazacyclophane macrocycle, (phen 2 N 2 )Fe, and compare its spectroscopic, electrochemical, and catalytic properties for ORR to a typical Fe-N-C material and prototypical pyrrolic iron macrocycles. N 1s XPS and XAS signatures for (phen 2 N 2 )Fe are remarkably similar to those of Fe-N-C. Electrochemical studies reveal that (phen 2 N 2 )Fe has a relatively high Fe(III/II) potential with a correlated ORR onset potential within 150 mV of Fe-N-C. Unlike the pyrrolic macrocycles, (phen 2 N 2 )Fe displays excellent selectivity for four-electron ORR, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data demonstrate that (phen 2 N 2 )Fe is a more effective model of Fe-N-C active sites relative to the pyrrolic iron macrocycles, thereby establishing a new molecular platform that can aid understanding of this important class of catalytic materials.
Load More