LY
Lei Yang
Author with expertise in Internet of Things and Edge Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(20% Open Access)
Cited by:
1,031
h-index:
24
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A framework for partitioning and execution of data stream applications in mobile cloud computing

Lei Yang et al.Apr 29, 2013
The contribution of cloud computing and mobile computing technologies lead to the newly emerging mobile cloud computing paradigm. Three major approaches have been proposed for mobile cloud applications: 1) extending the access to cloud services to mobile devices; 2) enabling mobile devices to work collaboratively as cloud resource providers; 3) augmenting the execution of mobile applications on portable devices using cloud resources. In this paper, we focus on the third approach in supporting mobile data stream applications. More specifically, we study how to optimize the computation partitioning of a data stream application between mobile and cloud to achieve maximum speed/throughput in processing the streaming data. To the best of our knowledge, it is the first work to study the partitioning problem for mobile data stream applications, where the optimization is placed on achieving high throughput of processing the streaming data rather than minimizing the makespan of executions as in other applications. We first propose a framework to provide runtime support for the dynamic computation partitioning and execution of the application. Different from existing works, the framework not only allows the dynamic partitioning for a single user but also supports the sharing of computation instances among multiple users in the cloud to achieve efficient utilization of the underlying cloud resources. Meanwhile, the framework has better scalability because it is designed on the elastic cloud fabrics. Based on the framework, we design a genetic algorithm for optimal computation partition. Both numerical evaluation and real world experiment have been performed, and the results show that the partitioned application can achieve at least two times better performance in terms of throughput than the application without partitioning.
0

Multi-User Computation Partitioning for Latency Sensitive Mobile Cloud Applications

Lei Yang et al.Nov 3, 2014
Elastic partitioning of computations between mobile devices and cloud is an important and challenging research topic for mobile cloud computing. Existing works focus on the single-user computation partitioning, which aims to optimize the application completion time for one particular single user. These works assume that the cloud always has enough resources to execute the computations immediately when they are offloaded to the cloud. However, this assumption does not hold for large scale mobile cloud applications. In these applications, due to the competition for cloud resources among a large number of users, the offloaded computations may be executed with certain scheduling delay on the cloud. Single user partitioning that does not take into account the scheduling delay on the cloud may yield significant performance degradation. In this paper, we study, for the first time, multi-user computation partitioning problem (MCPP), which considers the partitioning of multiple users' computations together with the scheduling of offloaded computations on the cloud resources. Instead of pursuing the minimum application completion time for every single user, we aim to achieve minimum average completion time for all the users, based on the number of provisioned resources on the cloud. We show that MCPP is different from and more difficult than the classical job scheduling problems. We design an offline heuristic algorithm, namely SearchAdjust , to solve MCPP. We demonstrate through benchmarks that SearchAdjust outperforms both the single user partitioning approaches and classical job scheduling approaches by 10 percent on average in terms of application delay. Based on SearchAdjust , we also design an online algorithm for MCPP that can be easily deployed in practical systems. We validate the effectiveness of our online algorithm using real world load traces.
0

Edge Mesh: A New Paradigm to Enable Distributed Intelligence in Internet of Things

Yuvraj Sahni et al.Jan 1, 2017
In recent years, there has been a paradigm shift in Internet of Things (IoT) from centralized cloud computing to edge computing (or fog computing). Developments in ICT have resulted in the significant increment of communication and computation capabilities of embedded devices and this will continue to increase in coming years. However, existing paradigms do not utilize low-level devices for any decision-making process. In fact, gateway devices are also utilized mostly for communication interoperability and some low-level processing. In this paper, we have proposed a new computing paradigm, named Edge Mesh, which distributes the decision-making tasks among edge devices within the network instead of sending all the data to a centralized server. All the computation tasks and data are shared using a mesh network of edge devices and routers. Edge Mesh provides many benefits, including distributed processing, low latency, fault tolerance, better scalability, better security, and privacy. These benefits are useful for critical applications, which require higher reliability, real-time processing, mobility support, and context awareness. We first give an overview of existing computing paradigms to establish the motivation behind Edge Mesh. Then, we describe in detail about the Edge Mesh computing paradigm, including the proposed software framework, research challenges, and benefits of Edge Mesh. We have also described the task management framework and done a preliminary study on task allocation problem in Edge Mesh. Different application scenarios, including smart home, intelligent transportation system, and healthcare, are presented to illustrate the significance of Edge Mesh computing paradigm.
2

An Energy-efficient and Privacy-aware Decomposition Framework for Edge-assisted Federated Learning

Yimin Shi et al.Nov 29, 2022
Deep Learning (DL) is an essential technology for modern intelligent sensor network and interactive multimedia applications, having problems with user data privacy when training on a central cloud. While Federated Learning (FL) motivates to preserve user privacy, it also causes new problems of lower user terminal usability and training efficiency, which caused substantial energy consumption. This article proposes a novel energy-efficient and privacy-aware decomposition framework to improve user-side FL efficiency under pre-defined privacy requirements with the assistance of Mobile Edge Computing (MEC) and Software Decomposition. It takes the propagation of each neural layer as the migrating unit and considers the tradeoff relationship between privacy and efficiency. We also propose an online scheduling algorithm to optimize the framework’s training performance. Furthermore, we summarize eight privacy-sensitive information classes on which existing privacy attacks base and design configurable privacy preservation mechanisms for each class. Simulations and experiments prove the effectiveness of our framework and algorithm in FL efficiency improvement and the effects of different privacy constraints on the overall training efficiency.
2
Paper
Citation4
0
Save
0

Partitioning Stateful Data Stream Applications in Dynamic Edge Cloud Environments

Shaoshuai Ding et al.Jan 13, 2021
Computation partitioning is an important technique to improve the application performance by selectively offloading some computations from the mobile devices to the nearby edge cloud. In a dynamic environment in which the network bandwidth to the edge cloud may change frequently, the partitioning of the computation needs to be updated accordingly. The frequent updating of partitioning leads to high state migration cost between the mobile side and edge cloud. However, existing works don’t take the state migration overhead into consideration. Consequently, the partitioning decisions may cause significant network congestion and increase overall completion time tremendously. In this article, with considering the state migration overhead, we propose a set of novel algorithms to update the partitioning based on the changing network bandwidth. To the best of our knowledge, this is the first work on computation partitioning for stateful data stream applications in dynamic environments. The algorithms aim to alleviate the network congestion and minimize the make-span through selectively migrating state in dynamic edge cloud environments. Extensive simulations show our solution not only could selectively migrate state but also outperforms other classical benchmark algorithms in terms of make-span. The proposed model and algorithms will enrich the scheduling theory for stateful tasks, which has not been explored before.