MS
Marc Steininger
Author with expertise in Estimation of Forest Biomass and Carbon Stocks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,961
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Biomass resilience of Neotropical secondary forests

Lourens Poorter et al.Feb 1, 2016
+62
T
F
L
An analysis of above-ground biomass recovery during secondary succession in forest sites and plots, covering the major environmental gradients in the Neotropics. More than half the world's tropical forests are the product of secondary growth, following anthropogenic disturbance. It is therefore important to know how quickly these secondary forests recover sufficiently to provide ecosystem services equivalent to those of old-growth forest. These authors focus on carbon sequestration in Neotropical forests, and find that carbon uptake is much higher than in old-growth forest, allowing recovery to 90% of the carbon stocks in an average of 66 years, but there is also wide variation in recovery potential. This knowledge could help assess the implications of forest loss — and potential for recovery — in different areas. Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle1. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use2,3,4. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha−1), corresponding to a net carbon uptake of 3.05 Mg C ha−1 yr−1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha−1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
0
Paper
Citation916
0
Save
0

Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

Robin Chazdon et al.May 6, 2016
+57
D
E
R
Models reveal the high carbon mitigation potential of tropical forest regeneration.
0
Paper
Citation565
0
Save
0

Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia

Marc SteiningerJan 1, 2000
M
This paper reports on a test of the ability to estimate above-ground biomass of tropical secondary forest from canopy spectral reflectance using satellite optical data. Landsat Thematic Mapper data were acquired concurrent with field surveys conducted in secondary forest fallows near Manaus, Brazil and Santa Cruz de la Sierra, Bolivia. Measurements of age and above-ground live biomass were made in 34 regrowth stands. Satellite data were converted to surface reflectances and compared with regrowth stand age, biomass and structural variables. Among the Brazilian stands, significant relationships were observed between middle-infrared reflectance and stand age, height, volume and biomass. The canopy reflectance-biomass relationship saturated at around 15.0 kg m-2, or over 15 years of age (r > 0.80, p < 0.01). In the Bolivian study area, no significant relationship between canopy spectral reflectance and biomass was observed. These contrasting results are probably caused by a low Sun angle during the satellite measurements from Bolivia. However, regrowth structural and general compositional differences between the two study areas could explain the lack of a significant relationship in Bolivia. The results demonstrate a current potential for biomass estimation of secondary forests with satellite optical data in some, but not all, tropical regions. A discussion of the potential for regional extrapolation of spectral relationships and future satellite imagery is included.
0
Paper
Citation414
0
Save
1

The global abundance of tree palms

Robert Muscarella et al.Jul 8, 2020
+220
O
T
R
Abstract Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
1
Paper
Citation66
0
Save