TH
Torben Hansen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
85
(55% Open Access)
Cited by:
53,324
h-index:
138
/
i10-index:
707
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin et al.Mar 1, 2010
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ∼150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively. The human body plays host to an estimated 100 trillion microbial cells, most of them in the gut where they have a profound influence on human physiology and nutrition — and are now regarded as crucial for human life. Gut microbes contribute to the energy harvest from food, and changes of gut microbiome may be associated with bowel diseases or obesity. Now the international MetaHIT (Metagenomics of the Human Intestinal Tract) project has published a gene catalogue of the human gut microbiome derived from 124 healthy, overweight and obese human adults, as well as inflammatory disease patients, from Denmark and Spain. The resulting data provide the first insights into this gene set — which is over 150 times larger than the human gene complement — and show that the genes are largely shared among individuals. Based on the variety of functions encoded by the gene set, it is possible to define both a minimal gut metagenome and a minimal gut bacterial genome. Deep metagenomic sequencing and characterization of the human gut microbiome from healthy and obese individuals, as well as those suffering from inflammatory bowel disease, provide the first insights into this gene set and how much of it is shared among individuals. The minimal gut metagenome as well as the minimal gut bacterial genome is also described.
0
0

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam et al.Apr 19, 2011
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
0
Citation6,449
0
Save
0

Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

Sofia Forslund et al.Dec 1, 2015
In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.
0
Citation1,772
0
Save
0

Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

Benjamin Voight et al.Jun 27, 2010
Mark McCarthy and colleagues identify twelve new risk loci for type 2 diabetes through a large-scale genome-wide association and replication study in individuals of European ancestry. The identified loci affect both beta-cell function and insulin action and are enriched for genes involved in cell cycle regulation. By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
0
Citation1,756
0
Save
0

Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3)

Kazuya Yamagata et al.Dec 1, 1996
THE disease non-insulin-dependent (type 2) diabetes mellitus (NIDDM) is characterized by abnormally high blood glucose resulting from a relative deficiency of insulin1. It affects about 2% of the world's population and treatment of diabetes and its complications are an increasing health-care burden2. Genetic factors are important in the aetiology of NIDDM, and linkage studies are starting to localize some of the genes that influence the development of this disorder3. Maturity-onset diabetes of the young (MODY), a single-gene disorder responsible for 2–5% of NIDDM, is characterized by autosomal dominant inheritance and an age of onset of 25 years or younger4–6. MODY genes have been localized to chromosomes 7, 12 and 20 (refs 5, 7, 8) and clinical studies indicate that mutations in these genes are associated with abnormal patterns of glucose-stimulated insulin secretion1,9. The gene on chromosome 7 (MODY2) encodes the glycolytic enzyme glucokinase5 which plays a key role in generating the metabolic signal for insulin secretion and in integrating hepatic glucose uptake. Here we show that subjects with the MODY3-form of NIDDM have mutations in the gene encoding hepatocyte nuclear factor-1α (HNF-1α, which is encoded by the gene TCF1). HNF-1α is a transcription factor that helps in the tissue-specific regulation of the expression of several liver genes10,11 and also functions as a weak transactivator of the rat insulin-I gene12.
0
Citation1,595
0
Save
Load More