JM
J. Macías-Pérez
Author with expertise in Cosmological Parameters and Dark Energy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(77% Open Access)
Cited by:
3,254
h-index:
125
/
i10-index:
433
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Planck 2018 results

P. Ade et al.Jun 12, 2020
+68
K
S
P
We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low ( ℓ < 30) and high ( ℓ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low- ℓ data and the high- ℓ temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ . We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θ MC , ω c , ω b , and H 0 by more than 30%, and n s by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the ℓ < 800 and ℓ > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.
0

TheHerschelMulti-tiered Extragalactic Survey: HerMES

Seb Oliver et al.Jul 6, 2012
+92
B
J
S
The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg2. Fields range in size from 0.01 to ∼20 deg2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution.
0

Planck2018 results

P. Ade et al.Nov 26, 2019
+70
J
Y
P
We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5 σ to 9 σ . Combined with temperature, lensing is detected at 40 σ . We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains σ 8 Ω m 0.25 = 0.589 ± 0.020 (1 σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, σ 8 = 0.811 ± 0.019, H 0 = 67.9 −1.3 +1.2 km s −1 Mpc −1 , and Ω m = 0.303 −0.018 +0.016 . Combining with Planck CMB power spectrum data, we measure σ 8 to better than 1% precision, finding σ 8 = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in σ 8 − Ω m space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck -only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.
0

Planck2018 results

Y. Akrami et al.Jun 19, 2020
+72
J
F
Y
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E -mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: f NL local = −0.9 ± 5.1; f NL equil = −26 ± 47; and f NL ortho = −38 ± 24 (68% CL, statistical). These results include low-multipole (4 ≤ ℓ < 40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarization-only bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 σ . Beyond estimates of individual shape amplitudes, we also present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is g NL local = (−5.8 ± 6.5) × 10 4 (68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different early-Universe scenarios that generate primordial NG, including general single-field models of inflation, multi-field models (e.g. curvaton models), models of inflation with axion fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the ΛCDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations.
0

Planck2018 results

Y. Akrami et al.Jun 5, 2019
+94
J
M
Y
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the ΛCDM cosmological model, yet also confirm the presence of several so-called “anomalies” on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, Q and U , or the E -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ℓ ≲ 400). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the ΛCDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales.
0

The Herschel★ PEP/HerMES luminosity function – I. Probing the evolution of PACS selected Galaxies to z ≃ 4

C. Gruppioni et al.Apr 16, 2013
+97
G
F
C
We exploit the deep and extended far infrared data sets (at 70, 100 and 160 um) of the Herschel GTO PACS Evolutionary Probe (PEP) Survey, in combination with the HERschel Multi tiered Extragalactic Survey (HerMES) data at 250, 350 and 500 um, to derive the evolution of the restframe 35 um, 60 um, 90 um, and total infrared (IR) luminosity functions (LFs) up to z~4. We detect very strong luminosity evolution for the total IR LF combined with a density evolution. In agreement with previous findings, the IR luminosity density increases steeply to z~1, then flattens between z~1 and z~3 to decrease at z greater than 3. Galaxies with different SEDs, masses and sSFRs evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to the IR luminosity density. Galaxies occupying the well established SFR/stellar mass main sequence (MS) are found to dominate both the total IR LF and luminosity density at all redshifts, with the contribution from off MS sources (0.6 dex above MS) being nearly constant (~20% of the total IR luminosity density) and showing no significant signs of increase with increasing z over the whole 0.8
0

LiteBIRD science goals and forecasts: improving sensitivity to inflationary gravitational waves with multitracer delensing

Toshiya Namikawa et al.Jun 1, 2024
+116
P
A
T
Abstract We estimate the efficiency of mitigating the lensing B -mode polarization, the so-called delensing, for the LiteBIRD experiment with multiple external data sets of lensing-mass tracers. The current best bound on the tensor-to-scalar ratio, r , is limited by lensing rather than Galactic foregrounds. Delensing will be a critical step to improve sensitivity to r as measurements of r become more and more limited by lensing. In this paper, we extend the analysis of the recent LiteBIRD forecast paper to include multiple mass tracers, i.e., the CMB lensing maps from LiteBIRD and CMB-S4-like experiment, cosmic infrared background, and galaxy number density from Euclid - and LSST-like survey. We find that multi-tracer delensing will further improve the constraint on r by about 20%. In LiteBIRD , the residual Galactic foregrounds also significantly contribute to uncertainties of the B -modes, and delensing becomes more important if the residual foregrounds are further reduced by an improved component separation method.
0
Citation4
0
Save
0

LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB

R. Génova-Santos et al.Jun 1, 2024
+114
G
T
R
Abstract We explore the capability of measuring lensing signals in LiteBIRD full-sky polarization maps. With a 30 arcmin beam width and an impressively low polarization noise of 2.16 μ K-arcmin, LiteBIRD will be able to measure the full-sky polarization of the cosmic microwave background (CMB) very precisely. This unique sensitivity also enables the reconstruction of a nearly full-sky lensing map using only polarization data, even considering its limited capability to capture small-scale CMB anisotropies. In this paper, we investigate the ability to construct a full-sky lensing measurement in the presence of Galactic foregrounds, finding that several possible biases from Galactic foregrounds should be negligible after component separation by harmonic-space internal linear combination. We find that the signal-to-noise ratio of the lensing is approximately 40 using only polarization data measured over 80% of the sky. This achievement is comparable to Planck 's recent lensing measurement with both temperature and polarization and represents a four-fold improvement over Planck 's polarization-only lensing measurement. The LiteBIRD lensing map will complement the Planck lensing map and provide several opportunities for cross-correlation science, especially in the northern hemisphere.
0
Citation3
0
Save
0

LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization

P. Campeti et al.Jun 1, 2024
+103
C
E
P
Abstract We study the possibility of using the LiteBIRD satellite B -mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar “axionlike” field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.
0
Citation2
0
Save
0

Euclid. I. Overview of the Euclid mission

Javier Barroso et al.Sep 18, 2024
+162
J
A
J
The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. is a medium-class mission in the Cosmic Vision 2015--2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14\,000\,deg$^2$ of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance.
Load More