SG
Satyajit Gupta
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
1,965
h-index:
24
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization

Yevgeny Rakita et al.Aug 22, 2016
Cesium lead bromide (CsPbBr3) was recently introduced as a potentially high performance thin-film halide perovskite (HaP) material for optoelectronics, including photovoltaics, significantly more stable than MAPbBr3 (MA = CH3NH3+). Because of the importance of single crystals to study relevant material properties per se, crystals grown under conditions comparable to those used for preparing thin films, i.e., low-temperature solution-based growth, are needed. We show here two simple ways, antisolvent-vapor saturation or heating a solution containing retrograde soluble CsPbBr3, to grow single crystals of CsPbBr3 from a precursor solution, treated with acetonitrile (MeCN) or methanol (MeOH). The precursor solutions are stable for at least several months. Millimeter-sized crystals are grown without crystal-seeding and can provide a 100% yield of CsPbBr3 perovskite crystals, avoiding a CsBr-rich (or PbBr2-rich) composition, which is often present alongside the perovskite phase. Further growth is demonstrated to be possible with crystal seeding. The crystals are characterized in several ways, including first results of charge carrier lifetime (30 ns) and an upper-limit of the Urbach energy (19 meV). As the crystals are grown from a polar aprotic solvent (DMSO), which is similar to those used to grow hybrid organic–inorganic HaP crystals, this may allow growing mixed (organic and inorganic) monovalent cation HaP crystals.
0

CsSnBr3, A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF2 Addition

Satyajit Gupta et al.Oct 18, 2016
Solar cells based on "halide perovskites" (HaPs) have demonstrated unprecedented high power conversion efficiencies in recent years. However, the well-known toxicity of lead (Pb), which is used in the most studied cells, may affect its widespread use. We explored an all-inorganic lead-free perovskite option, cesium tin bromide (CsSnBr3), for optoelectronic applications. CsSnBr3-based solar cells exhibited photoconversion efficiencies (PCEs) of 2.1%, with a short-circuit current (JSC) of ∼9 mA cm–2, an open circuit potential (VOC) of 0.41 V, and a fill factor (FF) of 58% under 1 sun (100 mW cm–2) illumination, which, even though meager compared to the Pb analogue-based cells, are among the best reported until now. As reported earlier, addition of tin fluoride (SnF2) was found to be beneficial for obtaining good device performance, possibly due to reduction of the background carrier density by neutralizing traps, possibly via filling of cation vacancies. The roles of SnF2 on the properties of the CsSnBr3 were investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) analysis.
0
Paper
Citation290
0
Save
0

How SnF2 Impacts the Material Properties of Lead-Free Tin Perovskites

Satyajit Gupta et al.Apr 8, 2018
Lead-based halide perovskites (APbX3) are fascinating optoelectronic materials. Because of toxicity issues of Pb, Sn-based halide perovskites are studied, although less so, as an alternative. Adding SnF2 often improves the properties of Sn halide perovskite-based devices. This effect is usually ascribed to suppression of Sn2+ → Sn4+ oxidation and/or decreased Sn vacancy concentration. These effects will change the doping, sometimes in opposite directions. Here we review the effect of addition of SnF2 during the formation of ASnX3 layers as observed by different groups, both to the properties of the layers themselves and to photovoltaic cells made from these layers. SnF2 can affect many different properties of the ASnX3 perovskites, including film morphology, doping, control over formation of unwanted crystal phases, material stability to various factors, and energy level positions. It also improves (in general) the performance of photovoltaic cells made with these layers. Besides focusing on all these issues, we also describe possible doping scenarios for the perovskites, including some that do not appear to have been considered before and conclude that the doping mechanism depends strongly on whether the oxidation of Sn2+ to Sn4+ occurs during the materials preparation or after the film is formed, and if oxygen is involved.
0
Paper
Citation206
0
Save
1

Can we use time-resolved measurements to get steady-state transport data for halide perovskites?

Igal Levine et al.Sep 11, 2018
Time-resolved, pulsed excitation methods are widely used to deduce optoelectronic properties of semiconductors, including now also Halide Perovskites (HaPs), especially transport properties. However, as yet, no evaluation of their amenability and justification for the use of the results for the above-noted purposes has been reported. To check if we can learn from pulsed measurement results about steady-state phototransport properties, we show here that, although pulsed measurements can be useful to extract information on the recombination kinetics of HaPs, great care should be taken. One issue is that no changes in the material are induced during or as a result of the excitation, and another one concerns in how far pulsed excitation-derived data can be used to find relevant steady-state parameters. To answer the latter question, we revisited pulsed excitation and propose a novel way to compare between pulsed and steady state measurements at different excitation intensities. We performed steady-state photoconductivity and ambipolar diffusion length measurements, as well as pulsed time-resolved microwave conductivity and time-resolved photoluminescence measurements as a function of excitation intensity on the same samples of different MAPbI3 thin films, and found good quasi-quantitative agreement between the results, explaining them with a generalized single level recombination model that describes the basic physics of phototransport of HaP absorbers. Moreover, we find the first experimental manifestation of the boundaries between several effective recombination regimes that exist in HaPs, by analyzing their phototransport behavior as a function of excitation intensity.