ZJ
Zhifeng Jiang
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(6% Open Access)
Cited by:
2,532
h-index:
45
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Hierarchical Z‐Scheme α‐Fe2O3/g‐C3N4 Hybrid for Enhanced Photocatalytic CO2 Reduction

Zhifeng Jiang et al.Jan 19, 2018
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge-separation efficiency. A hierarchical direct Z-scheme system consisting of urchin-like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g-1 h-1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g-C3 N4 alone (10.3 µmol g-1 h-1 ). The enhanced photocatalytic activity of the Z-scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin-like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z-scheme feature efficiently promotes the separation of the electron-hole pairs and enhances the reducibility of electrons in the conduction band of the g-C3 N4 . The origin of such an obvious advantage of the hierarchical Z-scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic-scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal-oxide-based Z-scheme system for solar fuel generation.
0

Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction

Zhifeng Jiang et al.Nov 1, 2012
Nickel nanoparticles with different sizes and morphologies were prepared with nickel chloride as the source of nickel and hydrazine hydrate as a reductant. Cetyltrimethyl ammonium bromide (CTAB), polyethylene glycol-10000 (PEG-10000), gelatin and their composites were used as modifiers in this research. The particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR). The effect of using single modifiers and their composites was investigated. The results revealed that the kind of modifier used had a significant effect on the morphology and size of the Ni nanostructure. The possible formation mechanism of nickel nanoparticles was also investigated. All of the formed nickel nanoparticles showed excellent catalytic activity in the reduction of p-nitrophenol compared to the commercial RANEY® Ni. The catalytic activity of nickel particles prepared in the presence of composite modifiers was higher than nano nickel catalysts prepared in the presence of single modifiers. The magnetic property, possible catalytic mechanism and the possibility of reusability were also investigated.
0

A Twin S‐Scheme Artificial Photosynthetic System with Self‐Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate

Xiaowen Ruan et al.Nov 22, 2022
Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3 N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g-1 h-1 and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.
0

Iso‐Elemental ZnIn2S4/Zn3In2S6 Heterojunction with Low Contact Energy Barrier Boosts Artificial Photosynthesis of Hydrogen Peroxide

Xiaowen Ruan et al.Jun 27, 2024
Abstract Artificial photosynthesis emerges as a strategic pathway to produce hydrogen peroxide (H 2 O 2 ), an environmentally benign oxidant and a clean energy carrier. Nonetheless, in many heterojunction‐based artificial photosynthetic systems, the H 2 O 2 productivity is significantly hindered by poor carrier transport, narrow spectral light absorption, and a lack of adequate active sites for the two‐electron oxygen reduction reaction. Herein, a catalyst architecture with an iso‐elemental heterojunction formed by interfacing Zn 3 In 2 S 6 nano‐flowers and ZnIn 2 S 4 nanosheets is proposed. This catalyst exhibits a H 2 O 2 production rate as high as 23.47 µmol g −1 min −1 under UV–vis light irradiation, which is attributed to the minimized contact energy barrier and enhanced lattice match at the ZnIn 2 S 4 /Zn 3 In 2 S 6 interface thanks to the iso‐elemental catalyst architecture which aids in enhanced efficient separation and transfer of photogenerated carriers. Theoretical simulations alongside comprehensive in‐situ and ex‐situ characterizations confirm the photo‐redox sites for H 2 O 2 generation and effective carrier dynamics across the catalyst surface. Moreover, substituting one reduction‐type catalyst ZnIn 2 S 4 with other non‐iso‐elemental catalysts like CdIn 2 S 4 , TiO 2 , and CdS further confirms the feasibility and superiority of the proposed iso‐elemental configuration. This work offers a new perspective on designing heterojunction catalysts for artificial photosynthesis of H 2 O 2 .
0
Citation1
0
Save
Load More