KZ
Kai Zheng
Author with expertise in Understanding Human Mobility Patterns
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(35% Open Access)
Cited by:
1,227
h-index:
50
/
i10-index:
173
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Discovering Urban Functional Zones Using Latent Activity Trajectories

Nicholas Yuan et al.Aug 5, 2014
The step of urbanization and modern civilization fosters different functional zones in a city, such as residential areas, business districts, and educational areas. In a metropolis, people commute between these functional zones every day to engage in different socioeconomic activities, e.g., working, shopping, and entertaining. In this paper, we propose a data-driven framework to discover functional zones in a city. Specifically, we introduce the concept of latent activity trajectory (LAT), which captures socioeconomic activities conducted by citizens at different locations in a chronological order. Later, we segment an urban area into disjointed regions according to major roads, such as highways and urban expressways. We have developed a topic-modeling-based approach to cluster the segmented regions into functional zones leveraging mobility and location semantics mined from LAT. Furthermore, we identify the intensity of each functional zone using Kernel Density Estimation. Extensive experiments are conducted with several urban scale datasets to show that the proposed framework offers a powerful ability to capture city dynamics and provides valuable calibrations to urban planners in terms of functional zones.
0
Citation374
0
Save
0

Adapting to User Interest Drift for POI Recommendation

Hongzhi Yin et al.Jun 14, 2016
Point-of-Interest recommendation is an essential means to help people discover attractive locations, especially when people travel out of town or to unfamiliar regions. While a growing line of research has focused on modeling user geographical preferences for POI recommendation, they ignore the phenomenon of user interest drift across geographical regions, i.e., users tend to have different interests when they travel in different regions, which discounts the recommendation quality of existing methods, especially for out-of-town users. In this paper, we propose a latent class probabilistic generative model Spatial-Temporal LDA (ST-LDA) to learn region-dependent personal interests according to the contents of their checked-in POIs at each region. As the users' check-in records left in the out-of-town regions are extremely sparse, ST-LDA incorporates the crowd's preferences by considering the public's visiting behaviors at the target region. To further alleviate the issue of data sparsity, a social-spatial collective inference framework is built on ST-LDA to enhance the inference of region-dependent personal interests by effectively exploiting the social and spatial correlation information. Besides, based on ST-LDA, we design an effective attribute pruning (AP) algorithm to overcome the curse of dimensionality and support fast online recommendation for large-scale POI data. Extensive experiments have been conducted to evaluate the performance of our ST-LDA model on two real-world and large-scale datasets. The experimental results demonstrate the superiority of ST-LDA and AP, compared with the state-of-the-art competing methods, by making more effective and efficient mobile recommendations.
0

Origin-Destination Matrix Prediction via Graph Convolution

Yuandong Wang et al.Jul 25, 2019
Ride-hailing applications are becoming more and more popular for providing drivers and passengers with convenient ride services, especially in metropolises like Beijing or New York. To obtain the passengers' mobility patterns, the online platforms of ride services need to predict the number of passenger demands from one region to another in advance. We formulate this problem as an Origin-Destination Matrix Prediction (ODMP) problem. Though this problem is essential to large-scale providers of ride services for helping them make decisions and some providers have already put it forward in public, existing studies have not solved this problem well. One of the main reasons is that the ODMP problem is more challenging than the common demand prediction. Besides the number of demands in a region, it also requires the model to predict the destinations of them. In addition, data sparsity is a severe issue. To solve the problem effectively, we propose a unified model, Grid-Embedding based Multi-task Learning (GEML) which consists of two components focusing on spatial and temporal information respectively. The Grid-Embedding part is designed to model the spatial mobility patterns of passengers and neighboring relationships of different areas, the pre-weighted aggregator of which aims to sense the sparsity and range of data. The Multi-task Learning framework focuses on modeling temporal attributes and capturing several objectives of the ODMP problem. The evaluation of our model is conducted on real operational datasets from UCAR and Didi. The experimental results demonstrate the superiority of our GEML against the state-of-the-art approaches.
0

On discovery of gathering patterns from trajectories

Kai Zheng et al.Apr 1, 2013
The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a trajectory pattern modelling various group incidents such as celebrations, parades, protests, traffic jams and so on. A key observation is that these incidents typically involve large congregations of individuals, which form durable and stable areas with high density. Since the process of discovering gathering patterns over large-scale trajectory databases can be quite lengthy, we further develop a set of well thought out techniques to improve the performance. These techniques, including effective indexing structures, fast pattern detection algorithms implemented with bit vectors, and incremental algorithms for handling new trajectory arrivals, collectively constitute an efficient solution for this challenging task. Finally, the effectiveness of the proposed concepts and the efficiency of the approaches are validated by extensive experiments based on a real taxicab trajectory dataset.
0

When large language models meet personalization: perspectives of challenges and opportunities

Jing Chen et al.Jun 28, 2024
Abstract The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, common-sense reasoning, etc. Such a major leap forward in general AI capacity will fundamentally change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, like conventional recommender systems and search engines, large language models present the foundation for active user engagement. On top of such a new foundation, users’ requests can be proactively explored, and users’ required information can be delivered in a natural, interactable, and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as a general-purpose interface, the personalization systems may compile user’s requests into plans, calls the functions of external tools (e.g., search engines, calculators, service APIs, etc.) to execute the plans, and integrate the tools’ outputs to complete the end-to-end personalization tasks. Today, large language models are still being rapidly developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be right the time to review the challenges in personalization and the opportunities to address them with large language models. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
0

Low Temperature Cu/SiO2 Hybrid Bonding with Protruding Copper Pads

Junpeng Fang et al.May 28, 2024
In this paper, we investigate a new scheme of Cu/SiO 2 hybrid bonding utilizing Cu pads with protrusion of 5-10 nm, and demonstrate that the bonding strategy is capable to achieve low temperature and time-saving bonding for chip-to-wafer (C2W) bonding applications. To study and reveal underlying bonding mechanisms, physical and chemical characterizations of the bonding surface and interface are performed. Atomic force microscope (AFM) measurement was carried out to detect the topography and surface roughness of Cu pads and SiO 2 dielectric. Moreover, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) analysis are used to observe the hybrid bonding interface. The experimental results demonstrate that grain growth and recrystallization have occurred at the Cu-Cu bonding interface, and no obvious cracks or voids are found in the SiO 2 -SiO 2 bonding interface. It can be concluded that a reliable and seamless Cu/SiO 2 hybrid bonding is realized at the low temperature of 200℃ with the pressure of 30 MPa for 5 mins, annealing at the temperature of 300℃ for 3.5 hours.
Load More